
Recommenders Everywhere: The WikiLens Community-Maintained
Recommender System

Dan Frankowski, Shyong K. (Tony) Lam, Shilad Sen, F. Maxwell Harper,
Scott Yilek, Michael Cassano, John Riedl

GroupLens Research, University of Minnesota
4-192 EE/CS Building, 200 Union Street Southeast

Minneapolis, Minnesota, 55455 USA

{dfrankow,lam,ssen,harper,syilek,mcassano,riedl}@cs.umn.edu

Abstract
Suppose you have a passion for items of a certain type, and
you wish to start a recommender system around those items.
You want a system like Amazon or Epinions, but for cookie
recipes, local theater, or microbrew beer. How can you set
up your recommender system without assembling
complicated algorithms, large software infrastructure, a
large community of contributors, or even a full catalog of
items?

WikiLens is open source software that enables anyone,
anywhere to start a community-maintained recommender
around any type of item. We introduce five principles for
community-maintained recommenders that address the two
key issues: (1) community contribution of items and
associated information; and (2) finding items of interest.
Since all recommender communities start small, we look at
feasibility and utility in the small world, one with few users,
few items, few ratings. We describe the features of
WikiLens, which are based on our principles, and give
lessons learned from two years of experience running
wikilens.org.

Categories and Subject Descriptors
H.4.3 [Information Systems Applications]:
Communications Applications]---information browsers.
K.4.3 [Computers and Society]: Organizational Impacts---
computer-supported collaborative work.

General Terms
Design; Experimentation; Human Factors.

Keywords
community-maintained, member-maintained, recommender
systems.

1. Introduction
As of November 2006, many top sites on the web are built
from or prominently feature user-contributed content. For
example, MySpace, eBay, Amazon, YouTube, craigslist,

and Wikipedia comprise six of Alexa's top ten sites for the
United States by web traffic. Some of these sites didn't exist
even 5 years ago. The rapid growth of user-contributed
content is possible due to inexpensive storage, inexpensive
network connections, increasingly powerful computers, and
people eager to share content with others.

As of November 2006, the Internet Movie Database1 has
over 880,000 movie or TV show episodes in its database,
and Wikipedia has over 1,400,000 articles in English alone.
Even Beeradvocate.com, a more specialized site, lists over
32,000 beers. You could drink a different beer every night
for the rest of your life! There is far more information
online than any person could ever process, which makes
finding information of interest difficult. Researchers call
this problem information overload, and recommender
systems are a popular solution to the problem.
Recommender systems (or recommenders) [1] suggest items
of interest based on a user’s preferences, behaviors, and
information about the items themselves.

However, recommenders are rarer than other types of
community sites, like forums or blogs. PhpBB2, popular
online forum software, was downloaded from SourceForge
over 9 million times, and Technorati.com tracks almost 60
million blogs. By contrast, there are only dozens of online
recommenders for books, movies, music, web sites, and so
on. Wikipedia’s “Collaborative Filtering” page lists 27
commercial web sites, 26 non-commercial sites3. As further
evidence of rarity, there are no systems or hosted services
to support recommenders. Rather, there are algorithms
[1][16] or libraries4 or web services5 from which you may
assemble your own site. We are drowning in information,
but thirsting for recommenders to help navigate it.

1 http://www.imdb.com
2 http://phpbb.sourceforge.net
3 Many recommender systems are based on collaborative filtering

algorithms that produce recommendations using the assumption
that similar users have similar tastes.

4 See http://en.wikipedia.org/wiki/Collaborative_Filtering
5 For example, http://www.easyutil.com

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or a fee.
WikiSym’07 October 21–23, 2007, Montréal, Québec, Canada.
Copyright © 2007 ACM 978-1-59593-861-9/07/0010…$5.00.

47

Taking a cue from successful web sites with user-
contributed content, we propose recommenders everywhere
using a community-maintained recommender that allows
users to contribute content as well as the information
necessary to recommend that content. Such a system would
support the activities of recommender communities, groups
of people who come together to recommend things.

One new research challenge for the recommenders
everywhere project is creating small world recommenders.
Most online communities are small, and are based on
groups of people who get to know each other over time. By
contrast, the best-known recommender algorithms evolved
from large e-commerce communities, so these algorithms
rely on statistical predictions based on ratings from a
largely anonymous community. Small world recommenders
have four key aspects: (1) providing value to users even
with very little preference data per item, (2) aggregating
user preferences into recommendations, (3) allowing users
to see specific individuals’ preferences for items, and (4)
depending on users to understand the relationship of their
preferences to those of other users. Small-world
recommenders help a user overcome the scarcity of
preference data. They supplement aggregate
recommendations with a user’s understanding of other users
and their preferences.

A community-maintained recommender has similarities to
discretionary databases [19] or public document
repositories [15], although it would also have evaluation
information like ratings or reviews as well as documents.
Thorn and Connelly [19] predict that "discretionary
information will be chronically undersupplied." However,
systems like Wikipedia, YouTube, and MySpace belie that
prediction. Other social theories try to explain this success.
For example, critical mass theory [14][15] says that a small
number of contributors can make a big difference,
especially in the face of increasing marginal returns (when
contributions count for more and more). Theorizing which
community-maintained recommenders have increasing
marginal returns is interesting, but beyond our scope.

This paper explores the design and implementation of
WikiLens, a community-maintained recommender that
communities could use as a hosted service or install for
themselves. We propose a set of principles for supporting a
recommender community (section 2), describe the design of
the WikiLens system to support those principles (section 4),
and report lessons we learned from our experiences in
running WikiLens installations (section 5). We focus mostly
on wikilens.org, a public website, but also have some
lessons from two smaller, private installations.

Community-maintained recommenders are desirable and
may be feasible. Now let us explore some proposed
principles with a parable.

2. Supporting Recommender Communities
Suppose you have a passion for beer. You are probably not
the only one. In fact, you wish to participate in an online
community about beer. First, you seek an existing web site
and find Beeradvocate.com. However, they don’t have your
favorite brew (served only in your neighborhood pub), and
they won't let you add beers until you've reviewed at least
20. At some large community sites, especially commercial
ones, the barriers are even higher: at Epinions.com you
have to become a Category Lead, selected by Epinions from
a nomination process that includes evidence of enthusiasm
and passion, and even phone interviews. At least they allow
adding items eventually. At Amazon, you can add reviews,
but cannot add new items. There are other communities that
let you add items right away, but not about beer: YouTube
(videos), flickr (pictures), digg (news articles), last.fm
(music), StumbleUpon (web sites).

So you decide to start your own community. How should
this community work to be effective at feeding and
harnessing the community passion for finding items of
interest? The rest of this section proposes answers to this
question in the form of organizing principles. Inspired by
the success of sites with user-contributed content, we
postulate principle #1:

ADD: Members should be able to add items immediately.

Adding beers has more than simple moral satisfaction.
Anderson [3] says that people like many more things than
just the most popular. He calls the little-known things the
“long tail” and argues that technologies or businesses that
help people find those things are valuable and
revolutionary: "the market for books that are not even sold
in the average bookstore is larger than the market for those
that are."

Moreover, Cosley et al. [6] found that members who could
see the results of their contributions immediately did more
work than those who saw results only pending review.
Thus, we propose that members be able to see their
additions right away.

So you, our intrepid beer lover, could try a forum or a blog.
There are plenty of software packages or free services.
However, you want a community with in-depth information
about beers. Adding beers as forum threads or blog posts is
unsatisfying. The basic organization is discussion-based,
not beer-based. Hosted online community software like
Yahoo or Google Groups has similar disadvantages. This
inspires principle #2:

DEEP CHANGE: Members should be able to uniquely
identify items, and define and redefine their attributes and
organization.

Each beer should be a uniquely identifiable entity in the
system, and also allow associated details (call them fields)
such as style, brewer, or alcohol content. Furthermore, for
usability’s sake, fields should be viewed and edited in a

48

visually consistent manner, using widgets people expect
like appropriately sized text boxes, radio buttons, drop-
downs, and so on. It might also be desirable to be able to
more closely link items to discussions as explored in [8],
but here we focus on the item database.

Our beer lover may be interested in any sort of item or even
multiple sorts—say pubs and beer magazines. Thus, the
system should support adding new categories of items,
changing item details, and adding fields to items.

Content Management Systems (CMSs) try to address such
problems in a structured way, and some (like Drupal) even
have recently added rating and recommendation modules.
However, CMSs are most often used for the few to
broadcast to the many. Few people can add items. Even
fewer people can change structure (say, by giving items
different fields, or adding new categories). An alternative,
Google Base6, allows posting items with arbitrary fields, but
lacks features to allow a community to collaborate on posts,
and its listings are ephemeral.

However, our beer lover wishes to unleash community
creativity, allowing members to produce interesting and
unexpected applications. Many people's first inclination is
that information on a site is better controlled by a privileged
few. Indeed, surveys in [6] indicate people prefer expert
oversight of contributions. However, that same study also
showed that despite peoples’ preferences, member
oversight produced similar quality and quantity. Since there
are often more community members than experts, allowing
members to do more work gets more done. Further, the
quality of the resulting database is high as long as other
members can review that work.

Allowing members to have control over the site may allow
the high contributors to step forward and start work without
delay. Finally, allowing members to make deep changes to
the site, like adding item fields or adding categories, may
allow the site to be more reflective of community desires,
and hence produce higher satisfaction and commitment.

Some of the most successful community-maintained sites
reflect the DEEP CHANGE principle. For instance,
Wikipedia’s community adds items to categories, changes
uniform display templates, and even builds bots and tools to
assist users.

On the opposite end of the spectrum, users may wish to try
a little bit before devoting a lot of effort to a system.
Principle #3:

MICRO-CONTRIBUTE: Members should be able to
make small contributions.

6 http://base.google.com

Many people may be willing to make small contributions,
especially ratings. Netflix7 (a movie rental website) has a
dataset with thousands of movies, but over one billion
ratings8. Perhaps this is because people find rating fun. In a
survey9 of 357 MovieLens10 users, 193 (54%) said one of
their top 3 reasons to rate movies (of 8 possibilities) was
because it is fun. Ratings also support important tasks, such
recommending or evaluating items.

Micro-contribution may also motivate casual contributors,
who can be very important to the community. Often, a few
people contribute a lot, and a lot of people contribute a little
bit. The top 1,009 reviewers at Amazon produce a
disproportionately high 257,773 reviews (with a median of
148 reviews per reviewer), but that is still a small fraction
of the total of 3.4 million reviews (with a median of 1
review per reviewer) [15]. It is an open question whether
more Wikipedia contributions are made by large
contributors or small ones. Jimbo Wales points out that a
small core community make most of the edits, but Aaron
Swartz claims occasional users may contribute more
content overall11. The debate hinges on the size of
contributions, which Swartz argues are often much larger
for the occasional contributor. Moreover, legitimate
peripheral participation (small starter tasks) may be a path
for a casual contributor to become a heavy one [4].

Our beer lover could try a wiki, which has many of these
characteristics. Each beer could be a page, and some wikis,
like MediaWiki, support templates that have visually
consistent details, although not familiar editing widgets. In
related research, Völkel et al. [21] propose ways to add
arbitrary attributes and relations to a wiki, but again not
using familiar editing widgets or consistent visual display.
Supporting micro-contribution requires simple, direct
interfaces for adding information.

However, as members contribute there will rapidly be many
beers, resulting in information overload. Remember,
Beeradvocate.com has over 32,000. How will members find
beers they will like from the plethora of available beers?
Principle #4 is

FIND: Members should be able to find items that interest
them.

A member is “interested in” a beer if they are convinced by
available information to wish to learn more about it,
perhaps by reading about it on the manufacturer’s web

7 http://netflix.com
8 http://www.netflixprize.com/faq
9 http://grouplens.org/data/mlsurvey0604.html
10 http://movielens.org. A movie recommender system run by

GroupLens Research.
11 http://www.aaronsw.com/weblog/whowriteswikipedia.

49

page, studying the label in the shop, or drinking it. FIND is
information filtering: selecting items of interest from a
larger set of possibilities. Even a small-world recommender
can contribute to successful information filtering; in that
case, the “larger set” is in the world.

Malone [13] summarizes three approaches to information
filtering based on interviews of office workers: cognitive
(content-based), economic (cost/benefit-based), and social
(other-people-based). We may wish a system to support all
of them.

Cognitive filtering may be served by tools operating on
factual details or descriptions. Organization (such as
categories or tags) is likely useful. Economic filtering is
when a user tries to estimate cost and benefit of
consumption from indirect clues, like message length or
sender. In a recommender, cost and benefit might be
estimated using clues such as popularity or even the actual
monetary cost.

What about social filtering? Before going online, our beer
lover learned about beer from his friends. Our intuition
agrees: we often seek recommendations from those we
know. Principle #5:

SEE OTHERS: Members should be able to see each other
and their contributions.

Several researchers theorize that social information is
important in our context. Erickson et al. [9] suggest that
“social translucence (systems supporting visibility,
awareness, and accountability) is “a fundamental
requirement for supporting all types of communication and
collaboration.” A community-maintained recommender
would be a collaborative system. Seeing others might
motivate contributions or social conventions. Schafer et al.
[17] speculate that showing individual ratings or reviews
may be particularly helpful in small communities.

These five principles serve two high-level goals. (1) ADD,
DEEP CHANGE, and MICRO-CONTRIBUTE are about
contribution: entering information into the system, either for
oneself (memory, self-expression), or for others (buddies,
the community, the world); (2) FIND and SEE OTHERS
are about exploration: extracting information in the system
for some useful purpose, like finding new things, making
decisions, or remembering.

3. Why A New System?
The preceding parable showed our beer lover encountered
systems that don't support recommendations, or are not for
beer, or are editorially controlled. There are libraries or
web services to assemble your own recommender, but they
do not address user interactions and system design.
Someone who wishes to lead a special-interest, possibly
small community probably wants an off-the-shelf system.

Well-known tools or hosted services propelled the
popularity of blogs and wikis. Where is the phpBB or
Wikipedia for recommenders? We see none yet. Moreover,
we have seen little research into building tools for
collaboratively maintained repositories with
recommendations (e.g., [10]), although there has been study
of recommending work in wikis [7].

4. System Design
WikiLens is an open-source recommender system we built
to investigate our principles in practice. We modified
PhpWiki, a popular open source wiki software package
written in PHP. A wiki is online software invented by Ward
Cunningham in 1995 [22] that displays pages and allows
users to edit any page or add new pages, and see their
changes immediately. Users edit wiki markup, a simple text
markup language that is translated to HTML when it is
displayed. Wiki markup in PhpWiki can include plugins
written in PHP, which may perform operations on the wiki
database and produce arbitrary output. This output is not
directly editable by users. All versions of each page are
saved so users can recover from mistakes or vandalism.
Viégas showed that a common type of vandalism in
Wikipedia was often reverted within minutes [20]. We
chose to modify a wiki because it supports user contribution
in a simple and robust way. We chose PhpWiki because it is
open source and fairly popular (150-200 downloads per
day).

In WikiLens, an item is represented by a wiki page. The
wiki page collects all information in the system about the
item (e.g., name, details, ratings, comments), as we describe
below.

Let us examine WikiLens features added to PhpWiki,
organized by our principles.

ADD. In WikiLens, any user may immediately add or edit
pages, hence items. Users can also import items in
categories for which we have written an importer plugin:
Book, Album, Restaurant. To import, a user finds the item
in a different system (say, Amazon or Chefmoz), pastes its
URL into WikiLens, and clicks an “Add Book” or “Add
Restaurant” button. WikiLens creates the appropriate page
using information from the provided URL.

DEEP CHANGE. An item may optionally have a category
(say, Restaurant), which dictates its structured data fields
(or fields). A category is simply a wiki page which is in the
“Category” category. Thus, categories may be created by
any user. Also, a category may have a fields definition page
(Figure 1).

50

* ADDRESS
 * Name: Address
* CITY
 * Name: City
 * display_as_subcategory: true
* ZIP
 * Widget: textbox(size=5,maxlength=10)
 * Name: Zip code
* CUISINE
 * Name: Cuisine
 * Widget: checkbox
 * Options
 * American
 * Bar / Pub
 … (some lines omitted)

Figure 1. Fields definition page for a Restaurant category.

Defining fields for a category has several effects. First, field
names and values (possibly blank) are displayed on each
item page in the category (Figure 2). Second, field names
and edit widgets are displayed when editing an item page
(Figure 3). Third, item importers (written in PHP) may refer
to the fields, and fill them where possible. For example,
Amazon provides book author, and our Book importer can
put that information in the Book field ‘Author’.

Figure 2. Display of Auriga, a page with fields from the
Restaurant category. Zip code is blank.

Field definitions are written in a simple indentation-
sensitive language. Each field has a name, at the leftmost
indentation level. Field properties are indented one level.
Possible properties are:

• Name: the display name of the field

• Widget: the widget used to display the field: ‘textbox’,
‘textarea’, ‘radio’, ‘checkbox’, ‘dropdown’, ‘select’,
‘hidden’, or ‘listitems’. The default Widget is a textbox.

• Options: possible values for restricted-choice widgets
(radio, checkbox, dropdown, select).

• display_as_subcategory: displays simple
filtering tools (see the category page filtering description
below)

The widgets correspond directly to common HTML
widgets, except for ‘listitems’ (see the lists description
below).

If a category has no fields definition page associated with it,
its items have no fields.

We built special editors to change an item category or to
change which page is a category’s field definitions page.
That is, that information is not displayed in the normal wiki
text editor. We started with it in specially formatted wiki
text, but were concerned that people would accidentally
erase or change it without realizing the implications.

Figure 3. Editing Auriga, a page with fields from the

Restaurant category.

This raises a general question: which information should be
in the wiki text, and which in specialized editors? We
decided to make special editors when it protects users from
making big mistakes that are hard to recover from. An
item’s category may be recovered since it is saved with
each page version—simply revert the page. However, if you
change an item’s category, the item will no longer show up
in that category, which may make it hard to find. Similarly,
if you change the fields definition page associated with a
category, all of the items in that category will show
different (or possibly no) fields. By this principle, it might
be best to have a special editor for the fields definition page
itself as well (e.g., “Are you sure you wish to hide 4,037
field values with this change?”), but for expediency we
didn’t build it.

Specialized editors move the system closer to a CMS in
some ways, but still with the wiki semantics of allowing
members to edit most things and have vandalism or error
protection (recent changes and being able to revert to
previous versions), and still with the semantics that most
changes are “editing a page,” possibly through a special
editor.

Finally, item category, category field definitions, and item
fields may be edited by any member. They are in the
version data of the appropriate page, hence may also be
reverted to undo mistakes.

MICRO-CONTRIBUTE. We expected some features to
be used by almost every member (e.g., ratings and finding

51

things), some only by the more dedicated (e.g., page
editing), and some only by those knowledgeable about the
system itself (e.g., category editing). We called these 100%
features, 10% features, and 1% features, respectively,
referring to the likely fraction of members that would use
each feature. We felt designing a feature for a wider
audience required more thought and engineering to make it
easy, so we tried to guess the audience for a feature before
building, and work harder at the features with a wider
audience.

Inspired by [11], to allow another type of micro-
contribution, we put an “Add Comment” widget at the
bottom of a page (Figure 2): type in a comment, click the
“Add Comment” button (or hit return), and it inserts the
comment at the bottom of the page text.

FIND. One can imagine many mechanisms for information
filtering. We believe it has two parts: 1) selecting items to
evaluate, which may include browsing, filtering (removing
possibilities), and ordering (focusing attention on certain
possibilities); 2) evaluating the items that were selected to
verify that they are indeed interesting.

A good way of selecting or evaluating items is with user
ratings. Items are pages, and users rate pages on a scale of
one-half to five smiley faces (Figure 2). Recall that users
also provide the items to be rated. Sometimes a user wished
to create a list of options on a single page (a poll) and have
others rate each option. To support this, we also allow wiki
markup (Figure 4) to place ratings widgets into the middle
of a page (Figure 5). We call this “Ratemania.” Often the
user’s options did not require rigorous fields, so it seemed
onerous to require a page for each option. Thus, a ratings
widget can refer to a page, or to an abstract identifier that
does not refer to any particular page.

<?plugin RateIt caption="highrider"
urn="grouplens:printernames:highrider" stats="true"
expandable="true" ?>

Figure 4. Markup for Ratemania ratings widget in Figure 5.

Users may also have buddies. As in a typical social network
system, a user A requests another user B to be a buddy, and
B may accept the request, after which each user is a buddy
of the other. They can see ratings of their buddies under
certain circumstances, such as in a Ratemania widget in its
expanded state (Figure 5), or a page ratings widget (Figure
2).

Surowiecki [18] says that an important feature of harnessing
collective wisdom is that people should contribute
information independent of each other. Otherwise people
can get sucked into an information cascade, where they
agree with each other instead of rendering independent
judgments, and information is lost. Cosley et al. [5]
supports this point, showing that seeing predictions can
affect rating behavior. Thus, the expandable option for a
ratings widget hides buddy ratings or statistics until the
rater clicks “more”, preferably after they’ve rated.

Figure 5. Ratemania ratings widgets for printer names,

expanded to show extra information.

Each category page is a hub of different activities. A
category page (e.g., “Book”) usually has a CategoryPage
plugin on it that shows (1) items in the category (Figure 6),
sorted by prediction value, (2) some filtering links (hiding
or showing rated or unrated items or values of fields
marked display_as_subcategory true, such as City
in Figure 1), (3) directions on how to search for and add
items, and (4) directions on how to set the Category fields
definition page, and other category maintenance activities.
There are also usually directions on how to import an item,
if importing is possible for the category.

Figure 6. Top of the Restaurant category page, with

recommendations, ratings widgets, buddy likes.

We tried several prediction algorithms that included
information about buddy ratings. We wanted an algorithm
with three properties: (1) predicted values on the same scale
as the ratings, (2) higher predicted values if buddy ratings
were higher, and (3) higher predicted values if items were
rated by many buddies. The primary challenge is that most
items have only a few buddy ratings. An algorithm that used
only buddy ratings had noisy predicted values. Another
algorithm that assumed an average rating for a buddy’s
missing rating yielded predictions near average for users
with many buddies.

The algorithm we chose for predicted values is based on
buddies’ ratings, but includes some influence from the
community average. Precisely, a prediction p for a subject
user s and item i is 0 if the item has been rated fewer than 3
times, or

5.0||

||
5.0

||

)(
||

,,

+

+

-
-

+=

∑

∑

∑
˛

˛

˛

i

i

Uu
iu

b

Bb
bb

Bb
bibbb

i

s B

U

r
P

sw

rrsw
B

rp

i

i

i

52

where

• Bi is the set of buddies that rated the item i

• Ui is the set of users that rated the item i

• ru,i is user u’s rating of item i

• ur is the average rating of a user u

• wb is the Pearson correlation between the buddy b and the
user who is receiving the prediction

• sb is a significance weighting)1,50/max(bC where Cb is
the number of co-rated items between the user and the
buddy

• 1||2/1 -= iB
bP if the user has more than two buddies,

otherwise 0

While this looks fearsome, the sum on the left is simply a
traditional user-based k-nearest-neighbor prediction with
significance weighting, the summation on the right is simply
the item average, Pb slightly penalizes a prediction if a user
has many buddies few of whom have rated the item, and the
two sums are weighted and averaged together.

Finally, the “likes” column in Figure 6 shows buddies that
rated the item above their own average, along with their
ratings.

Another way of finding items of interest is by looking at
user pages. Each user has a page where you can see their
ratings, buddies, lists, and profile information, unless they
have marked such information as private in their
preferences.

There are three ways to search based on content: an open
search box that searches page titles, a parameterized search
within a category that allows the user to specify particular
fields of interest (Figure 8), and one-click filtering by fields
marked display_as_subcategory (Figure 1) or by
category on the user pages. Clicking on a value filters the
category page items to only those that have that value.

Figure 7. User page with the "Ratings" tab selected.

Figure 8. Parameterized search, generated from fields.

WikiLens also supports user-created lists of items. At its
simplest, a list could just be a normal wiki page with either
bulleted or term-definition lists. However, pages in the List
category have special structure. A field of “listitems” type
comes up in the page editor with a bit of extra help: a
widget to add items to a list (Figure 9). There is also a spot
on every page to add that page to an arbitrary list (Figure
10). WikiLens displays on each page any lists of which that
page is a member.

A list is an explicit (forward) specification of a group of
items all in one place. A backward grouping is editing each
item to declare its membership in a group, much like
categories. One can also imagine backward grouping with
tags, which would allow an item to be in multiple groups.

One key question is whether items should be forward
grouped through lists, or backward grouped through
categories. We hypothesize that forward might be more
useful for small groups or when you are declaring the whole
group at once, while backward might be more useful for
large groups or if the group is declared as you browse
items.

WikiLens also has features supporting evaluation of interest
in items the user selects: item details, prediction values,
average ratings, buddy ratings, comment text, and also the
normal wiki page text, which users may edit freely.

Figure 9. Adding items to a page in the List category.

53

Figure 10. The list widget (left) shows this page is on the

"Hugo Award" List. It also allows the user to add the page to
a list, with auto-completion of the user’s existing lists (right).

SEE OTHERS. There are several wiki mechanisms for
seeing others. A “recent changes” link shows pages that
have been added or edited. Each page has the history of
who edited it. There are also mechanisms we added: user
pages, with profiles and ratings (Figure 7); and buddies,
who allow you to see their ratings.

People can also affect each others’ contributions. WikiLens’
wiki features enable changing page content, including item
field values, other users’ comments, and the category of
which a page is a member. Other users’ ratings are not
changeable, as they are intended to be owned by a particular
user. Comments are also perhaps owned in this way, but it
was expedient to place them in page text, and there is wiki
precedent for this. We have not had problems with comments
being maliciously edited.

Although we described features by the main principle they
supported, each feature supports multiple principles (Table
1).

5. Experiences
In this section, we describe our experiences with the
WikiLens software on wikilens.org, a public semi-anonymous
web site, and two installations for private groups who knew
each other (our research group GroupLens, and a book club).

Table 1. How features support design principles.

Feature Principles
Item is a wiki page All: ADD, DEEP CHANGE, MICRO-

CONTRIBUTE, FIND, SEE OTHERS
User-maintained
structured data

DEEP CHANGE, FIND, MICRO-
CONTRIBUTE

Import ADD
Ratings FIND, MICRO-CONTRIBUTE, SEE

OTHERS
Comments FIND, MICRO-CONTRIBUTE, SEE

OTHERS
Lists FIND, MICRO-CONTRIBUTE, SEE

OTHERS
Category page ADD, FIND, MICRO-CONTRIBUTE,

SEE OTHERS

Feature Principles
Open search,
Parametric search,
Filtered browse

FIND

Recent changes SEE OTHERS
Recommendations FIND, SEE OTHERS
Buddies FIND, SEE OTHERS
User pages FIND, SEE OTHERS

The usage statistics we describe are from wikilens.org,
gathered from April 13, 2004 to October 22, 2006 (about 31
months), with more detailed usage logging from May 3, 2005
onward (about 18 months). The amount of contribution
(ratings and pages) was heavily influenced by individual
users, hence it varies widely, and it is hard to say whether the
trend was more or less usage over time. The site was open to
anonymous contributions (adding items, even rating items)
until January 13, 2006, when we required registration in order
to combat wiki spam attacks. Anonymous users show up as
IP addresses (e.g., 128.101.35.68) in the logs. We cannot tell
how many anonymous users are behind an IP address, so we
report the number of distinct IP addresses (“IPs”) in addition
to the number of distinct logged-in visitors in Table 2. We do
report the number of items, ratings, and comments made by
anonymous users (“Anon.”) in column 2. There is also a lot
of anonymous browsing, but we do not report it because we
do not know how much of it is bots like search engine web
crawlers.

Table 2. wikilens.org basic contribution statistics.

Statistic All

(Anon.)

GroupLens Paper
Authors

distinct
users

users 231
(+36 IPs)

26 7 n/a

items 4430
(84)

812
(19%)

594
(14%)

99
(+29 IPs)

ratings 17271
(18)

2427
(14%)

1386
(8%)

199
(+7 IPs)

comments 791
(51)

459
(58%)

375
(47%)

46
(+47 IPs)

There are several social factors that may have a significant
influence on the results. Wikilens.org was started by
GroupLens members, so we call out in Table 2 the fraction
of contributions by anyone associated with GroupLens, and
by the authors of this paper. Table 2 shows that GroupLens
had a considerable fraction of contributions but by no
means a majority, except that the authors contributed many
of the comments.

Furthermore, we occasionally recruited in MovieLens
forums or in response to emails about MovieLens.
Members complain when movies they wish to rate are not
present in the system, and we would respond that they could
try WikiLens.

54

We now discuss lessons we learned, organized by our
principles: ADD, DEEP CHANGE, MICRO-
CONTRIBUTE, FIND, SEE OTHERS.

ADD.

Lesson #1: Users will add items
About half of users (99 of 231, plus 29 IPs, Table 2) added
at least one item. Some users added many, which we
describe below.

Lesson #2: Import tools made it easier for users to add
items, but were not needed to broaden the community of
contributors.

Some of us were excited to build import tools, since it
lowers the cost of getting items with complete details (e.g.,
a book with author, link to Amazon, and so on).

Table 3. Contribution in top five categories of wikilens.org
(not counting the User category).

Category # items # distinct
contrib-

utors

distinct
contributors

in top 25
most-rated

Had
importer

Movie 1967 23 (3 IPs) 7 No

Book 730 50 (7 IPs) 16 Yes

Album 673 25 (3 IPs) 8 Yes

Restaurant 114 24 (2 IPs) 12 Yes

Web site 93 30 (3 IPs) 9 No

However, the largest category (Movie) had no import tool
(Table 3). The next two (Book and Album) had import tools.
Book had a larger number of distinct contributors than
Movie, while Album (with fewer items) had a similar number
of contributors to Movie. From this, we can’t tell if the import
tool broadened the community of contributors or not.

Lesson #3: Broadening the community of contributors is
useful.

A broad community of contributors is desirable. For example,
it may make a community more robust to members leaving.

It may also make the recommender more reflective of the
community’s interests. We had one user (call him
MovieMaven) who added a considerable portion of all
movies (1,357 of 1,967). However, MovieMaven did not add
all of the popular movies. He added only three of the top 25
most-rated movies in WikiLens. Similarly in the Book
category the top contributor (the first author) added only 3 of
the top 25. Table 3 shows that in general there were many
distinct contributors in the top 25 most-rated items of each
category.

We were also surprised that a broader community may
converge more rapidly than we expected to interests outside

of WikiLens. Popular movies in MovieLens are often also in
WikiLens: 95 of the MovieLens top 100; 399 of the top 500;
693 of the top 1,000. Since MovieLens has thousands of
active users from all over the world, it is a reasonable proxy
for movie popularity. Presumably, on average these popular
movies are more well-known and interesting for browsers.
MovieMaven did not add all of the movies by this external
measure of popularity either: 36 of the MovieLens top 100;
239 of the top 500; 468 of the top 1,000.

Lesson #4: One empowered user can make a big difference.

This is perhaps no surprise to those familiar with volunteer
efforts. MovieMaven says:

“I really love the opportunity to add whatever you'd
like in the film category, which is the main reason
I'll keep the site on my radar in the future. It makes
the site unique among its kind, at least as far as I
know.”

It turns out MovieMaven is not only a WikiLens user, but
also a MovieLens user. MovieMaven added 1,357 movies in
WikiLens, of which 1,320 (97%) were already in MovieLens!
We confirmed via usage statistics and email that these movies
were added manually without the use of scripts. Most of the
times between MovieMaven’s movie adds were 10-300
seconds. Conservatively estimating 30 seconds per add, this
is at least 12 hours of work. MovieMaven says:

“I did it the old fashioned way, line by
line, allowing myself to become a bit too obsessed
by the whole thing! It didn't seem to take too long
regardless, because I knew most of the info
already..”

Apparently the 3% of movies not in MovieLens was
sufficiently motivating to seek another recommender in which
to participate. In fact, it is a common complaint on
MovieLens by heavy users that some of their favorite movies
are not present and the maintainers of MovieLens do not add
enough movies, which is part of what motivated this research.

It seems likely that the “Movie” category became the biggest
because one user dedicated considerable energy to it,
although we cannot entirely rule out the possibility that other
users from MovieLens would have picked up the slack.

Lesson #5: Items in the “long tail” can attract attention
Our top “search keyphrase”12 reported by our web log
analyzer is “thottbot.com”. Thottbot.com is a site with
supporting details for World of Warcraft, a very popular
video game, and also one of the “Web site” items on
WikiLens. We also attracted the most comments (13, mostly
anonymous) to the “Michelob Golden Draft Light” beer page
discussing how it is only available in certain places, people

12 a phrase used in a search engine to get to WikiLens

55

miss it, love it, hate it. Both of these items show up on the
first page of Google search results at present.

Neither of these items is in the most popular category, or the
most popular in their respective categories (Thottbot.com is
#28 of 94, Michelob is #13 of 64). This is another example of
the argument in [3] that there is real interest in the many little-
known items in the “long tail”.

DEEP CHANGE.

Lesson #6. Users understand and change categories and
fields.

Table 4 shows that the top categories on WikiLens have
fields. Those fields were mostly set up by the authors,
although not in the case of the most popular category, Movie.
We avoided the “Movie” category because it seemed
redundant to duplicate the more popular MovieLens.
However, a casual user of both systems created the Movie
category and many of its fields, and then another user (not
MovieMaven) added a couple of fields (“Genre” and
“Starring”) and field values (genre choices).

Table 4. Fields in top five categories.

Category Movie Book Album Restaurant Web
site

visible fields 8 7 6 12 2
% field values
filled in

65 % 84 % 80 % 71 % 48 %

% items with
some fields
filled in

99 % 97 % 97 % 94 % 49 %

% items
imported

0 % 78 % 53 % 24 % 0 %

Fields created
by non-authors

yes no no no no

Fields edited by
non-authors

yes no no yes no

There are other examples of users using categories and
fields. There is a “SuggestedCategory” category where
people can rate ideas they’d like to see as categories. The
first author made the “TV Show” category when a user
strongly prompted him to promote it from
SuggestedCategory. It then had some fields and possible
options added by users. Now it has 16 distinct contributors
of items, 57 items, and 350 ratings. Also, “New York
Restaurant” shares many fields with “Restaurant” but with
“cross street” added, which is important in Manhattan,
where a primary user of that category lived.

Lesson #7. Users fill in field values.

Table 4 also shows that fields are often filled in, both by
importing and entering manually. The “Web site” category
has an unusually low number of field values filled in. In this
case, fields were added after many of the items in the
category, and migration of the field data from page text to
fields has not yet been done.

Lesson #8. Users can define new applications with flexible
tools.

In a private book club, we created “Proposed Book” and
“Read Book” categories that share fields and importers,
since an important task of the book club is to choose a book
(from “Proposed Book”), then read it (dropping it into
“Read Book”). Also, the group evolved to choose their next
book on a “Next Book” page, where a few books are hand-
selected by members for the next book chooser to examine.
The page is free-form text with Ratemania widgets so
ratings can be gathered and opinions seen by the chooser,
and the “Proposed Book” category keeps data on which
books have not been chosen but have high ratings.

Another example from wikilens.org: the “Recipe” category
has the problem that many recipes are copyrighted, and
should not be reproduced. A user who wanted this category
solved the problem (perhaps unintentionally) by simply
making one of the fields be “URL” and referring to recipes
on other web sites. (To be fair, the “Recipe” category is still
quite small.)

MICRO-CONTRIBUTE.

Lesson #9. WikiLens supports a range of contribution, and
the easiest things are participated in widely.

Table 2 shows that 199 of 231 registered users made at
least one rating, 99 added an item (+29 IPs), 46 made
comments (+47 IPs), whereas 16 users (only 6 not
associated with GroupLens) made changes to category field
definitions.

Lesson #10: Small communities need spam protection.
As noted above, an easy and obvious “Add Comment”
interface attracted outside contribution. However,
wikilens.org also attracted unwanted contribution. In late
2005, spammers discovered the site, and started editing
dozens of pages per day in clearly automated ways to put
links to their own sites, presumably to increase their
perceived importance to search engines. While Wikipedia
successfully defends against vandals through a large and
vigilant community, WikiLens is smaller and more
vulnerable. Even requiring creation of a login did not
help—the spammers automatically created users. (This was
more impressive because we had customized the login
screen to our own site.) We solved this problem by
requiring answering a question about a picture to create a
login (also called a CAPTCHA [2]), and rating at least one
page before editing.

However, our solution may have been too drastic, because
we also stopped anonymous comments. (Up to that point 51
comments had been added anonymously.) Perhaps we
should follow the lead of popular blogs that pose a
CAPTCHA to anonymous users after entering a comment.
This entices the user to add a comment, then once already
invested, prove that they are a human.

56

FIND.

Lesson #11. Category pages were hubs of browsing.

The top 10 pages browsed by logged-in users in our
detailed usage logging were: Movie (6288 times),
RecentChanges (4998), TitleSearch (4684), Book (3234),
Album (3198), HomePage (2331), Artist (881),
AccountCreated (784), Beer (733), Web site (648). Six of
those top 10 were category pages. Note that this result is
somewhat confounded by the fact that category pages
encompass several non-browsing activities as well, such as
adding or searching for an item in that category.

We further investigated browsing behavior with a survey
we administered to all WikiLens users November 10-15,
2006 with the goal of measuring their perceptions of the
system. The survey got 37 responses, of which 54%
considered themselves current users of the site. We
administered questions on a five point scale,
“strongly agree” (1), “agree” (2), “neutral” (3), “disagree”
(4), and “strongly disagree” (5) along with open comment
boxes.

Users most strongly agreed that they use WikiLens to ‘find
new items to learn more about’ (81% agreed or strongly
agreed, average 2.11). Users most strongly agreed that they
find items in WikiLens by ‘a category page (e.g., “Movie”
shows all movies, ordered by prediction)’ (65% agreed or
strongly agreed, average 2.1). Users most strongly agreed
that they evaluate items based on ‘prediction value on a
category page’ (67% agreed or strongly agreed, average
1.9).

Users mostly search with the search box prominently
displayed on each page, which searches page titles. They
performed 5,324 searches over 18 months: 88% page title
searches, 5% parametric searches, 4% full page text
searches, and 2% fuzzy title searches.

Lesson #12. Traditional collaborative filtering is possible
even in small datasets.

While we did not implement traditional collaborative
filtering in WikiLens, we decided it would be interesting to
simulate it after the fact to see if it might be useful in the
small world.

We compared the recommendation quality of two models:
First, an average model that predicted the average item
rating for each item. All ratings fed in and out of the model
were user-average-adjusted ratings, i.e., (user rating -
average user rating). Second, a standard item-based model
using cosine similarity [16].

To reduce prediction noise, we pruned the dataset to items
and users with at least five ratings, which reduced it to 156
users and 1,035 items. To evaluate recommendation
accuracy, we trained a prediction model on 80% of the
users, and withheld 20% for measurement. For each
withheld user, we hid 20% of the user’s ratings (selecting

only relatively high ratings), fed the other 80% into the
recommendation model, and generated a recommendation
list without regard to category. We measured recall, the
fraction of the hidden 20% of the ratings included in
recommendation lists of size 1, 5, 10, and 100. We repeated
the process 300 times.

Table 5 shows the results. Recall was higher for the cosine
model, especially for short recommendation lists. A chi-
squared test on the number of recalled hidden ratings versus
missed hidden ratings show the differences between models
to be significant (χ2=211, 422, 134, 49; p <= 0.001 for all
sizes).

Table 5. Recommendation simulation results.

Model Recall1 Recall5 Recall10 Recall100
Average 0.00185 0.010 0.028 0.215
Cosine 0.00674 0.024 0.039 0.230

SEE OTHERS.

Lesson #13. Buddies were mostly used by pre-existing social
groups.

On wikilens.org, 44 users had at least one buddy, 21 from
GroupLens Research (call it the “lab”), and 22 from outside
GroupLens, and one test user. Most users had no buddies.
There were 184 lab-lab relations, 34 lab-nonlab relations, and
30 nonlab-nonlab relations. Thus, the average number of
buddies for a lab member was 8.8, and for a non-lab member
with at least one buddy it was 2.8. A user in the lab was much
more likely to have many buddies, and the buddies were also
likely to be in the lab. Similarly, in the two smaller private
WikiLens instances people had many buddies in order to see
each others’ ratings.

Some of us hoped users on wikilens.org would bring new
users into the system as buddies to see their recommendations
or ratings, but this did not happen.

People did view others’ ratings somewhat: 36 logged-in users
(9 from GroupLens) viewed another user’s ratings page 1,491
times (567 from GroupLens users). However, according to
our survey, users tended to respond least positively to the
social features of the site. For example: “I use WikiLens to
influence others” (33% agree or strongly agree), “I use
buddies’ ratings to evaluate items” (36%), “I add things for
particular people” (21%). This indicates that most users did
not feel social ties, but used the system alone. User did seem
to feel a connection to the community as a whole – they
claimed to add and rate items for the good of the community
(86%).

Lesson #14. If you can get buddies, seeing their ratings may
be valuable.

Our two smaller, private WikiLens installations with pre-
existing social groups often used others’ ratings in “instant
poll” Ratemania to help choose research papers or books to
read, printer names, and more. Identified ratings helped

57

intuitively answer such questions as “is one item here a clear
winner?” or “does this choice make someone very unhappy?”

6. Possible Improvements
Our experiences suggest many ideas for improvements.

Improving recommendations.

81% of users surveyed agreed or strongly agreed that they use
WikiLens to ‘find new items to learn more about’. WikiLens
recommendations are averages, modified by buddies’
opinions. These social recommendations proved valuable in
small groups who knew each other before joining the system,
but not in larger groups who did not know each other in
advance. This may have occurred because we did not design
features to help people get to know one another. Future work
might benefit from explicit design to encourage the
development of relationships. Because of the lack of social
relationships, many users did not get personalized
recommendations. Perhaps the social recommender should be
augmented with content filtering techniques that work
independent of the number of buddy relationships, or even
mixing in some amount of traditional collaborative filtering
algorithms.

Improving content organization and manipulation.

Many survey respondents agreed or strongly agreed that they
use WikiLens to ‘keep track of items (e.g., movies) I like or
dislike’ (64%, average 2.54), yet organizing the repository
has several major challenges. First, some categories have
natural hierarchical structure. At present wikilens.org has five
restaurant categories, one for each locality of a user who
wished to start one (Boston, New York, Bay Area,
Minneapolis, and Chicago). One category per locality does
not scale. How should these categories share with each other
appropriately, while preserving local character? Second,
supporting DEEP CHANGE while providing satisfactory
performance is challenging. How should user changes to
category structure propagate through the system? Should the
changes immediately lead to reorganization, which would
slow their initial execution, or should the changes be
interpreted at search time, which would slow every search
operation? Third, there are several interesting extensibility
features that could be explored, including allowing users to
build or modify item importers13, or to plug in custom
recommendation algorithms. Few users would take advantage
of these features, but they might have far-reaching effects.

Improving usability, sociability, and incentives to contribute.

During development, we did informal usability testing.
However, WikiLens is a real, complex system with multiple
goals (contributing and finding various types of content), and
could be made easier and more obvious to use. For example,
some people make accounts and do not rate or edit anything.

13 http://citeulike.org allows this

This is perhaps a sign that they do not know or care what to
do next. One user said,

“I got frustrated with the interface. There were also
too many things to rate. Rating other users seemed
a bit too ‘meta’ too me.”

On the other hand, it may not appeal to everyone. Another
user said, “I tried it shortly for [curiosity] but did not yet
have a concrete case where I would need to use it.”

Furthermore, a stronger social community (e.g., more social
interaction or even mentoring) supported by social features
might foster more contribution. One user said,

“i had a lot of intention to contribute more, I just
haven't had the motivation to :)”

One might look at research on using social theory to motivate
contribution [12].

Improving ease of installation

There are several WikiLens installations with varying degrees
of activity and success. However, WikiLens is not trivial to
install. One potentially successful application is very small
communities where everyone knows each other and would
like simple ways to share their opinions about items. Such
communities are more likely if installation is easy.

Improving underlying technology for performance and ease
of development.

We chose PhpWiki as a popular, extensible, mature platform
upon which to develop. However, developing in PHP has
challenges. It is hard to write code that is fast and space-
efficient, especially across requests. This has been a constant
issue even at the small scale of wikilens.org (thousands of
items), and hampers experimentation. Possible strategies to
address this include using PHP’s shared-memory caches
(rumored unreliable) or distributed caches like memcached14
(which would increase the complexity of installation and
operations). Also, PHP more easily allows coding errors like
misspelled variable names or changed function interfaces.
Several of us have been tempted to switch to or rewrite a
system in a compiled language like Java for performance and
type checking, while others of us are repulsed by this same
suggestion. Since WikiLens to date has required many hours
of development, these are important issues to grapple with.

7. Conclusion
We have argued that recommenders everywhere would be
valuable, and that they are feasible. We have explored five
key principles to guide their development. We described
WikiLens, our open-source system with features that support
those principles, and shared our experiences with it. We
cannot draw incontrovertible conclusions based on only a few
deployments, but we found support for many of the

14 http://www.danga.com/memcached

58

principles, especially those enabling user contribution and
deep changes.

In our experience, many users will contribute a little, some a
lot. A broad community adds many of the most popular items,
and also gems of interest from the long tail. Given power,
users understand, add, and change categories and item fields,
and can solve problems in unexpected ways or even create
new applications. Users use and like an interface to
recommend interesting items, and are interested in their
buddies’ opinions.

However, we also learned of limitations to our approach.
WikiLens users could use improved recommendations,
usability, sociability, incentives to contribute, performance,
and ease of installation, while its developers would appreciate
an easier platform upon which to develop.

We encourage other researchers to join us in achieving the
vision of community-maintained recommenders. To that end,
WikiLens is available as open source software at
http://www.wikilens.org/wikilens-src.tgz, and we make
datasets of the non-private parts of the current repository
available to other researchers upon request. Our hope is that
recommenders may flourish everywhere to help us find our
way through an overwhelming world of information.

8. Acknowledgements
Thanks to Joe Konstan for design discussions; Dan Cosley,
Melissa Skeans, and Kurt Wilms for helpful conversations
and support; and WikiLens users for passion. This work is
funded by National Science Foundation grants IIS 03-24851
and IIS 05-34420.

9. References
[1] G. Adomavicius, A. Tuzhilin. Toward the Next Generation of

Recommender Systems: A Survey of the State-of-the-Art and
Possible Extensions. IEEE Trans. on Knowledge and Data
Engineering. Vol. 17, Issue 6. (2005) pp. 734–749.

[2] L. von Ahn, M. Blum, N. Hopper, J. Langford. CAPTCHA:
Using hard AI problems for security. Eurocrypt, 2003.

[3] C. Anderson. The Long Tail. Wired 12.10, Oct. 2004.
http://www.wired.com/wired/archive/12.10/tail.html.

[4] S. Bryant, A. Forte, A. Bruckman. Becoming Wikipedian:
transformation of participation in a collaborative online
encyclopedia. GROUP 2005, pp. 1-10.

[5] D. Cosley, S. K. Lam, I. Albert, J. Konstan, J. Riedl. Is
Seeing Believing? How Recommender Systems Influence
Users' Opinions. CHI 2003, pp. 585-592.

[6] D. Cosley, D. Frankowski, S. Kiesler, L. Terveen, J. Riedl.
How Oversight Improves Member-Maintained Communities.
CHI 2005, Portland, OR, 2005, pp. 11-20.

[7] D. Cosley, D. Frankowski, L. Terveen, J. Riedl. SuggestBot:
Using Intelligent Task Routing to Help People Find Work in
Wikipedia. Intelligent User Interfaces (IUI) 2007.

[8] S. Drenner, M. Harper, D. Frankowski, J. Riedl, L. Terveen.
Insert Movie Reference Here: A System to Bridge
Conversation and Item-Oriented Web Sites. CHI, 2006.

[9] T. Erickson, W. Kellogg. Social translucence: an approach to
designing systems that support social processes. ACM
Transactions on Computer-Human Interaction (TOCHI).
Vol. 7, Issue 1 (March 2000), pp. 59-83.

[10] J. Goecks, D. Cosley. NuggetMine: Intelligent Groupware
for Opportunistically Sharing Information Nuggets. In
Proceedings of the 2002 Int’l. Conf. on Intelligent User
Interfaces (IUI 2002), pp. 106-113.

[11] M. Guzdial, J. Rick, B. Kerimbaev. Recognizing and
Supporting Roles in CSCW. CSCW 2000.

[12] K. Ling, G. Beenen, P. Ludford, X. Wang, K. Chang, X. Li,
et al. Using social psychology to motivate contributions to
online communities. Journal of Computer Mediated
Communication, 2005.

[13] T. Malone, K. Grant, F. Turbak, S. Brobst, M. Cohen.
Intelligent Information-Sharing Systems. Communications of
the ACM, Vol. 30, No. 5, May 1987, 390-402.

[14] P. Oliver, G. Marwell, R. Teixeira. A Theory of the Critical
Mass. I. Interdependence, Group Heterogeneity, and the
Production of Collective Action. The American Journal of
Sociology, Vol. 91, No. 3. (1985).

[15] N. Peddibhotla, M. Subramani, M. Contributing to Public
Document Repositories: A Critical Mass Theory Perspective.
Working Paper 2006, Carlson School of Management,
University of Minnesota.
http://misrc.umn.edu/workshops/2006/spring/naren.pdf.

[16] B. M. Sarwar, G. Karypis, J. A. Konstan, and J. Riedl. Item-
based collaborative filtering recommendation algorithms.
World Wide Web Conference (WWW10), May 2001.

[17] J. Schafer, J. Konstan, J. Riedl. Electronic Commerce
Recommender Applications. Journal of Data Mining and
Knowledge Discovery. (2000). vol. 5 nos. 1/2, pp. 115-152.

[18] J. Surowiecki. The Wisdom of Crowds. Doubleday, 2004.

[19] B. Thorn, T. Connolly. Discretionary Data Bases: A Theory
and Some Experimental Findings. Communication Research,
Vol. 14, No. 5. (1 October 1987), pp. 512-528.

[20] F. B. Viégas, M. Wattenberg, K. Dave. Studying cooperation
and conflict between authors with history flow visualizations.
SIGCHI, pages 575–582, Vienna, Austria, 2004. ACM Press.

[21] M. Völkel, M. Krötzsch, D. Vrandecic, H. Haller, R. Studer.
Semantic Wikipedia. World Wide Web Conference, 2006.

[22] Wiki Wiki Web: http://c2.com/cgi/wiki?WikiWikiWeb.

59

