
COMMUNICATIONS OF THE ACM March 2000/Vol. 43, No. 3 107

When a user selects a graphical object on
the screen, for example, most PBE systems
describe the object in terms of the properties of
the underlying application data. If the user
selects a link on a Web page, the PBE system
might represent that selection based on the
link’s HTML properties.

Here, we explore a different, and radical,
approach—using the visual properties of the
interaction elements themselves, including
size, shape, color, and appearance—to describe
user intentions. Only recently has the speed of
image processing made feasible PBE systems’
real-time analysis of screen images. We have
not yet realized the goal of a PBE system that
uses “visual generalization” but feel this

approach is important enough to warrant
describing and promoting the idea publicly.
(Visual generalization means the inference of
general patterns in user behavior based on the
visual properties and relationships of user
interface objects.)

Visual information can supplement the
information available from other sources, sug-
gesting new kinds of generalizations not possi-
ble from application data alone. In addition,
these generalizations can map more closely to
user intentions, especially beginning users,
who rely on the same visual information when
making selections. Moreover, visual generaliza-
tion can sometimes remove one of the main
stumbling blocks—reliance on application

Robert St. Amant, Henry Lieberman, Richard Potter,
and Luke Zettlemoyer

Let PBE systems use the visual properties of on-screen

interactive elements to bridge the user’s view of an application and

its underlying programmable functionality.

VISUAL GENERALIZATION IN

Programming
BYExample
In programming by example (PBE), also known as programming by demonstra-

tion, the system records actions performed by users in the interface and produces a gener-

alized program that can be used later in analogous examples. A key issue is how to describe

the actions and objects selected by the user, so the system can determine what kind of gen-

eralizations are possible.

programming interfaces (APIs)—preventing PBE
from being used with conventional applications.
When necessary, PBE systems can work exclusively
from the visual appearance of applications—without
explicit cooperation from their APIs.

If You See It, You Should Be
Able to Program It
Every PBE system has what Dan Halbert, devel-
oper of SmallStar, one of the earliest PBE systems,
calls the “data description problem,” or how to fig-
ure out what users mean when they select objects
on a screen [1]. How an object is described could
produce very different effects the next time a pro-
cedure is recorded and generalized by the system.
When interacting with a PBE system, a user select-
ing an icon for a file
foo.bar in a desktop
file system could
mean any one of sev-
eral things: that spe-
cific file alone and no
other; any file whose
name is foo.bar; any
icon that happens to
be at the location
that was clicked; or
something else.

Most systems deal
with this issue by mapping the user’s selection to
the application’s data model or to its files, to email
messages, to circles and boxes in a drawing, or to
something else. They then permit generalizations
on the data’s properties, such as file names and
message senders. But the user’s intuitive descrip-
tion of an object might sometimes depend on the
actual visual properties of the screen elements
themselves—regardless of whether these properties
are explicitly represented in the application’s com-
mand set. We endorse the idea of using these visual
properties to permit PBE systems to perform visual
generalization.

As an example of why visual generalization may
prove useful, especially in PBE applications, suppose
we want to write a program to save all the links on a
Web page that have not been clicked and viewed by
the user at some point in time (see Figure 1). If the
Netscape browser happens to include the operation
“Move to the next unfollowed link” as a menu option
or in its API, system developers or even everyday users
might be able to automate the activity through macro
recorders, such as Quickeys. Unfortunately, Netscape
does not include this operation; it also lacks a “Move
to the next link” operation. Even if we had access to

the Web page’s HTML source, we still wouldn’t know
which links the user had followed. Identification of
previously followed links is an example of a general
problem for PBE systems in interfacing to almost any
application. Interactive applications make it easy for
users to carry out procedures and do not expect to be
treated as subroutines by external systems.

This Netscape example shows the conceptual gap
between a user’s view of an application and its under-
lying programmable functionality. Bridging this gap
can be a difficult problem in the design of PBE sys-
tems in which representation of user actions might
completely fail to match the user’s intentions.

Perhaps we are looking at this problem from the
wrong perspective. From that of the user, the func-
tionality of an interactive application is defined by its

user interface, devel-
oped to cover specific
tasks, communicate
through appropriate
abstractions, and
accommodate the
user’s cognitive, per-
ceptual, and physical
abilities. A PBE sys-
tem might be
improved significantly
if it could work in the

same medium as its
user, processing the visual environment with all its
associated information. One of our goals is to empha-
size this key insight.

What does visual generalization buy us? Let’s imag-
ine a PBE system incorporating techniques to process
a visual interactive environment, extracting informa-
tion that is potentially relevant to the user’s inten-
tions. The system would gain at least the following
performance benefits:

Integration into existing environments. Historically,
most PBE systems have been built on top of iso-
lated research systems, rather than on commercial
applications. Some have been promising but
haven’t been adopted because of integration diffi-
culties. Visual PBE systems, independent of
source code and API constraints, could poten-
tially reach an unlimited user audience.

Consistency. Independence from an application’s
source code or API gives a PBE system added
flexibility. Similar applications often have a simi-
lar appearance and behavior; for example, users
can switch between Web browsers with little dif-
ficulty. A visual PBE system could take advantage
of functional and visual consistency to operate

108 March 2000/Vol. 43, No. 3 COMMUNICATIONS OF THE ACM

PBE systems can work

exclusively from the

visual appearance of applications—

without explicit cooperation

from the application’s API.

across similar applications with little or no modi-
fication.

New sources of information. Most important, some
kinds of visual information may be difficult or
impossible to obtain through other means. More-
over, this information is generally related closely to
the user’s understanding of a particular application.

These benefits are all available to PBE system
developers but apply equally to PBE system users. In
the Netscape example, a visual PBE system would be
able to run on top of the existing browser, without
requiring the use of a substitute research system.
Because the standard Netscape browser employs the
convention of displaying the followed links in red and
the unfollowed links in blue, a user might specify the
“Save the next unfollowed link” action in visual terms
as “Move to the next line of blue text,” then invoke
the “Save link as” operation. This specification
exploits a new source of visual information—the color
of the link. Finally, the general consistency among
browsers should allow the same PBE system to work
with both Netscape and Microsoft Internet Explorer,
a much trickier proposition for API-based systems.

However, providing a visual processing ability raises
some novel challenges for PBE systems.

Image processing. How can these systems extract
visual information at the image-processing level?
Such processing must happen in an interactive sys-
tem, interleaved with user actions and observations
of the system, thus raising significant efficiency

issues. Information extraction is an
issue of the basic technical feasibility of
the visual approach to PBE. Our expe-
rience with VisMap, a software agent
system under development since 1998
by the authors St. Amant and Zettle-
moyer, found that real-time analysis of
the screen is possible on today’s high-
end machines.

Information management. How can
a system process low-level visual data to
infer high-level information relevant to
user intentions? For example, a visual
object under a mouse pointer might be
represented as a rectangle, a generic
window region, or a window region
specialized for some purpose, such as
text entry or freehand drawing. A text
box with a number in it might be an
element of a fill-in form, a table in a text
document, or a cell in a spreadsheet.
Concern over what is being represented
is also important for generalization

from low-level events to the abstractions they imple-
ment. Is the user simply clicking on a rectangle or per-
forming a confirmation action?

Brittleness. How can a system deal gracefully with
visual variations beyond the scope of a solution? In
the Netscape example of collecting unfollowed links,
users may change the colors Netscape uses to distin-
guish followed from unfollowed links, thereby (per-
haps) rendering obsolete a previously recorded
procedure. A link may extend over more than a sin-
gle line of text, so the mapping between lines and
links is not exact. Similar blue text might appear in
a GIF image and be captured inadvertently by the
procedure. Moreover, if the program visually parses
the screen, links that do not appear (because they are
below the current scrolling position) are not
included. Out of sight, out of mind. Though the
problem of lost or misplaced links might be cured by
programming a loop scrolled through the page, in
the same way a user would scroll through the page,
we can put most of these problems in a novel light
by observing that they can be difficult for even a
human to solve. Almost everyone has been fooled
now and then by advertising graphics camouflaged
as legitimate interface objects; without more infor-
mation (such as might be provided by an API call),
a visual PBE system cannot hope to do better.

Just the Pixels, Ma’am
(Low-level Visual Generalization)
The author Potter’s work on pixel-based data access

COMMUNICATIONS OF THE ACM March 2000/Vol. 43, No. 3 109

Figure 1. Can we write a program that saves all the
links that haven’t been followed?

pioneered the approach of treating a screen image as
the source for generating descriptions for generaliza-
tion. The Triggers PBE system he helped develop at
the University of Maryland performs exact pattern
matching on screen pixels to infer information that
is otherwise unavailable to an external system [7]. A
“trigger” is a condition-action pair. For example,
triggers are defined for
such tasks as sur-
rounding a text field
with a rounded rec-
tangle in a drawing
program, shortening
lines so they intersect
an arbitrary shape and
converting text to a
bold typeface. The
user defines a trigger
by stepping through a
sequence of actions in
an application, adding annotations to be used later
by Triggers when appropriate. Once a set of triggers
is defined, users can activate them (iteratively and
exhaustively) to carry out their actions.

Several strategies can be used to process visual pixel
information so it can be used to generalize computer
programs (see Figure 2). The visual processing strat-
egy used by the Triggers system computes locations of
exact patterns within the screen image. For example,
suppose a user records a mouse macro that modifies a
URL in order to display the next higher directory in
a Web browser. Running the macro can automate this
process, but only for one specific URL, because the
mouse locations are recorded with fixed coordinates.
However, this macro can be generalized by using pixel
pattern matching on the screen image. The pattern
the system should use is what users would look for if
they were doing the task manually—in this case, the
pixel pattern of a slash character. Finding the next to

last occurrence of this pattern gives a
location from which the macro can
begin the macro’s mouse drag, thus
generalizing the macro so it works with
most URLs.

Although this macro program affects
targets, such as characters, strings,
URLs, and Web pages, the program’s
internal data is only low-level pixel pat-
terns and screen coordinates. It is how
this low-level data is used within the
rich graphical user interface (GUI) con-
text that gives higher-level meaning to
the low-level data. The fact that a low-
level program can map so directly to

much higher-level meaning reveals how conveniently
a GUI’s visual information is organized for productive
work [7].

The most valuable advantage of this visual process-
ing strategy is that the low-level data and operators of
the programming system can map to many high-level
meanings, even those not originally envisioned

by the programming
system’s developer.
The disadvantage is
that high-level inter-
nal processing of the
information is diffi-
cult, since an outside
context is required for
most interpretation.

Another system
that performs data
access at the pixel level

is AutoMouse, devel-
oped by Kakuya Yamamoto, a researcher in Kyoto
University in Japan; it searches the screen for rectan-
gular pixel patterns and click anywhere within a pat-
tern [9]. Copies of the patterns can then be arranged
on a document and connected to form simple visual
programs. Each pattern can be associated with differ-
ent mouse and keyboard actions.

What You See Is What You Record
(High-level Visual Generalization)
Our VisMap, which is in some ways a conceptual
successor to Triggers, is a programmable set of sen-
sors, effectors, and skeleton controllers for visual
interaction with off-the-shelf applications [10]. Sen-
sor modules take pixel-level input from the display,
run the data through image-processing algorithms,
and build a structured representation of visible
interface objects. Effector modules generate mouse
and keyboard gestures to manipulate these objects.

110 March 2000/Vol. 43, No. 3 COMMUNICATIONS OF THE ACM

Figure 2. Steps in a mouse macro to move a browser up
one directory. And using Triggers to select a pixel pattern

that generalizes the macro.

How can a system process

low-level visual data to infer
high-level information relevant to

a user’s intention?

VisMap is designed as a programmable user
model—an artificial user through which developers
can explore the characteristics of a particular user
interface.

VisMap is not, by itself, a PBE system but demon-
strates that visual generalization is practical in any
interface. Our current research seeks to apply its
approach in a full PBE system. VisMap translates the
pixel information to data types that have more mean-
ing outside the GUI context. For example, building on
VisMap in 1999, we developed VisSolitaire, a simple
visual application that plays Microsoft Windows Soli-
taire (see Figure 3). VisMap translates the pixel infor-
mation to data types representing the state of a generic
game of Solitaire. This state provides input to an AI
planning system that plays a reasonably adept game of
solitaire, from the starting deal to a win or loss. It does
not use an API or otherwise get any cooperation from
Microsoft Solitaire.

VisSolitaire’s control cycle alternates between
screen parsing and generalized action. VisSolitaire

processes the screen image
to identify cards and
their positions. When the
cards are located by the
application’s image-pro-
cessing algorithms, a visual
grammar characterizes
them based on relative
location and visual proper-
ties. In this way, the system
identifies the stacks of cards
that form the stock,
tableau, and foundation,
while classifying each card
based on visual identifica-
tion of its suit and rank.

VisSolitaire interleaves a
bottom-up pattern-recog-
nition process with a top-
down interpretation of
visual patterns. Key to Vis-
Solitaire’s effectiveness is
the loose coupling between
these two components.
The strategic, game-play-
ing module represents its
actions in general terms,
such as “Move any ace that
is on top of a tableau pile to
an empty foundation slot.”
The system’s visual process-
ing component maps this
command to the specific

state of the Solitaire application—by invoking the
command “Move the ace of spades to the second
foundation slot.” VisSolitaire, like a human solitaire
player, relies on the layout of the cards to guide its
actions, rather than relying solely on the visual repre-
sentations of the cards alone.

VisMap’s ability to recognize cards illustrates an
application-specific visual recognition procedure that
can be used in visual generalization. To make a visual-
recognition approach work for PBE in general, we
may have to define visual grammars that describe the
meaning of particular interface elements, that is, the
visual language of a particular application.

For example, if we understand that the format of a
monthly calendar is a grid of boxes, with each box
representing the date and lines within the boxes rep-
resenting particular appointments, we can infer the
properties of an appointment object in the Now-Up-
to-Date calendar program from Power On Software.
It is also possible that there are other properties of the
appointment object, such as the duration of the

COMMUNICATIONS OF THE ACM March 2000/Vol. 43, No. 3 111

Figure 3. VisSolitaire source data and visual processing results.

appointment, that are not represented in the visual
display, so we may not be able to infer them from the
screen representation alone.

Developing application-display-format grammars
is time-consuming work for even expert developers
and is not for end users. However, a developer’s effort
for a particular application can be amortized over all
the uses of the application. The model of the applica-
tion can be incomplete, capturing only the aspects of
the application data of current interest.

One way to use the results of this kind of process-
ing in a PBE system is to adopt an approach like that
of Tatlin [5], which infers user actions by periodically
polling applications for their state and comparing
successive states to determine user actions. Tatlin uses
the “examinability” of the application data models in
a Microsoft Excel spreadsheet and Now Up-to-Date
via the Applescript interprocess communication lan-
guage (see Figure 4). In the scenario in the figure, a
user copies information from a calendar and pastes it
into the spreadsheet. Tatlin “sees” that the data pasted
into the spreadsheet is the same as the data selected in
the calendar and infers the transfer operation.

If PBE system developers wanted to develop
descriptions of the visual interface of the calendar and
the spreadsheet, they could analyze the screen image,
even without access to the underlying application
data.

Other research offers further evidence of the poten-
tial of visual generalization. For example,
Fred Lakin, a researcher in the Performing Graphics
Co., built several programming environments around
an object-oriented graphical editor called Vmacs

[4]. He used a recognition
procedure on the visual rela-
tionships between objects to
attach semantics to sketched
objects, thus implementing
a kind of visual generaliza-
tion. Notably, the grammars
used to drive the recognition
procedure were themselves
represented visually in
Vmacs. A kind of visual
generalization was used by
David Kurlander, a
Microsoft researcher, to
automate search-andreplace
procedures [2]. But while
Lakin and Kurlander were
able to access the visual
properties of objects in their
own purpose-built graphical
editors directly, our meth-

ods extract the same kind of visual properties directly
from a pixel-level analysis of the screen.

Novel Generalizations
(Generalizing on Grids)
Visual generalization promises the option of having
more kinds of generalizations than are possible by
generalizing solely from the properties of the under-
lying application data. As an example of the kind of
useful generalization not possible with data-based
approaches, consider that it might be possible to
convey the general notion of a grid, so procedures
might be iterated throughout the grid’s elements.

The idea of a grid can be expressed purely through
visual relations; you program the system to start at
one object, then move right until you find the next,
and so on, until there are no more objects to the right.
You then return to the object at the beginning of the
row, move down one object, then start moving to the
right again; you keep scanning through each row until
you can’t move down any more.

Once you have the “idea” of a grid, you can apply
it in a variety of applications. The same program can
work whether operating on daily schedules in a cal-
endar program, icons in a folder window, or tables in
Netscape (see Figure 5).

For generalizing on a grid to work, the definition
of “Move to the next object to the left” and “Move to
the next object down” may have to be redefined for
each application. But given the ability of the PBE sys-
tem to do so, the developer can make real the user’s
perception that all grids are basically the same, despite
the artificial barriers that independently programmed

112 March 2000/Vol. 43, No. 3 COMMUNICATIONS OF THE ACM

Figure 4. Tatlin infers that the user wants to copy data from
a calendar to a spreadsheet.

applications impose on this form of generalization.

Conclusions
We should ask ourselves a number of questions
when exploring any new programming perspective,
such as the one offered by visual generalization. How
can it contribute in a way other perspectives do not?
Existing techniques, such as Apple Events and OLE
Automation, can sometimes provide powerful per-
spectives from which to build programs. But adding
a new perspective to a system can significantly
increase user interface complexity. If there is a large
overlap in the range of information being processed
by more than one application, the information’s new
form must provide some advantage—as demon-
strated by the Triggers system and by VisMap.

What new user interface challenges are raised by
these new perspective? What tools address these chal-
lenges? For example, the Triggers system has to accu-
rately specify pixel patterns and distances that are
quite cryptic when viewed out of context. It addresses
this challenge through its built-in Desktop Blanket, a
technique Potter devised for Triggers to allow direct
manipulation widgets to float above the display’s
screen pixels. VisMap has to infer high-level features
from low-level pixel data, addressing this challenge
through a two-stage translation process. The first
stage works bottom up to identify low-level features.

The second works top down
to infer high-level features
from the low-level features.

Can complete software
solutions be built within the
visual generalization per-
spective as we’ve described
it? Such solutions may indi-
cate the potential for an ele-
gant special-purpose system.
Working from one perspec-
tive, it has the potential to
produce a simple elegant
interface; Triggers, for
example, shows that a small
set of functions can be used
to automate nontrivial tasks.
More work has to be done,
however, to show that a sig-
nificant user group can
make use of this functional-
ity.

How can we integrate our
visual generalization per-
spective with other perspec-
tives? Triggers addresses this

question by showing how its Desktop Blanket can be
added to a conventional programming language [8].
And VisMap has a textual interface that can be inte-
grated easily with textual programming languages that
use other techniques.

Our intuition about the design of a visual general-
ization system for PBE leans toward a broad-based
approach that applies pixel-level operators, as in Trig-
gers, where appropriate, but also generates higher-
level information inferred from the pixel data, as in
VisMap. If the user knows what a particular piece of
information looks like on the screen but does not
know how to describe it, a low-level pixel-based
approach may be the best option. If displayed infor-
mation needed by a program is not provided by for-
mal techniques and its visual appearance is
complicated, a high-level pixel-based approach may
be the best solution. If the program needs efficient
access to an application’s large data structures, the user
can choose a conventional programming technique,
such as OLE Automation and Apple Events, assuming
the application includes the necessary support.

Other issues in visual generalization in PBE appli-
cations include the granularity of event protocols,
styles of interaction with the user, and parallelism [5].
Event granularity determines the level of abstraction
at which a visual system interacts with an interface.
For example, should mouse movements be included

COMMUNICATIONS OF THE ACM March 2000/Vol. 43, No. 3 113

Figure 5. Examples of grids in a calendar, the finder, and Netscape.

in the information being exchanged? And if not all
mouse movements, which ones are important enough
to include? Moreover, issues of parallelism can enter
the picture when the system and the user each try to
manipulate the same interface object.

The opportunities and challenges of visual general-
ization represent a fruitful new direction for PBE in the
future. It might turn out that when it comes to graphi-
cal interfaces, beauty may indeed be only skin deep.

References
1. Halbert, D. Programming by demonstration in the desktop metaphor. In

Watch What I Do: Programming by Demonstration, A. Cypher, Ed. MIT
Press, Cambridge, Mass., 1993.

2. Kurlander, D. and Bier, E. Graphical search and replace. In Proceedings of
ACM SIGGRAPH’88 (Atlanta, Aug. 1–5). ACM Press, New York, 1988,
113–120.

3. Kurlander, D. and Feiner, S. A history-based macro by example system. In
Proceedings of the ACM Symposium on User Interface Software and Technol-
ogy (Monterey, Calif., Nov. 15–18). ACM Press, New York, 1992,
99–106.

4. Lakin, F. Visual grammars for visual languages. In Proceedings of the Sixth
National Conference on Artificial Intelligence (AAAI-87), (Seattle, July
12–17). AAAI Press, Menlo Park, Calif., 1987, 683–688.

5. Lieberman, H. Integrating user interface agents with conventional applica-
tions. Knowl.-Based Syst. J. 11, 1 (Sept. 1998), 15–24; see also Proceedings of
the ACM Conference on Intelligent User Interfaces (San Francisco, Jan. Jan.
6–9). ACM Press, New York, 1998, 39–46.

6. Olsen, D. Interacting in chaos. ACM Interact. 6, 5 (Sept.–Oct. 1999),
42–54.

7. Potter, R. Triggers: Guiding automation with pixels to achieve data access.
In Watch What I Do: Programming by Demonstration, A. Cypher, Ed. MIT
Press, Cambridge, Mass., 1993.

8. Potter, R. Pixel Data Access: Interprocess Communication in the User Interface
for End-User Programming and Graphical Macros. Ph.D. dissertation. Uni-
versity of Maryland Department of Computer Science, May 1999.

9. Yamamoto, K. A programming method of using GUI as API. Transact. Info.
Proc. Soc. Japan 39 (Dec. 1998), 26–33 (in Japanese).

10. Zettlemoyer, L. and St. Amant, R. A visual medium for programmatic con-
trol of interactive applications. In Proceedings of ACM CHI’99 Human Fac-
tors in Computing Systems (Pittsburgh, May 15–20). ACM Press, New
York, 1999, 199–206.

Robert St. Amant (stamant@csc.ncsu.edu) is an assistant
professor in the Computer Science Department at North Carolina
State University in Raleigh, N.C.
Henry Lieberman (lieber@media.mit.edu) is a research scientist in
the Media Laboratory at the Massachusetts Institute of Technology in
Cambridge, Mass.
Richard Potter (potter@cs.umd.edu) is a researcher in the Japan
Science and Technology Corp. in Tokyo.
Luke Zettlemoyer (lszettle@eos.ncsu.edu) is an undergraduate in
the Computer Science Department of North Carolina State University
in Raleigh, N.C.

© 2000 ACM 0002-0782/00/0300 $5.00

c

114 March 2000/Vol. 43, No. 3 COMMUNICATIONS OF THE ACM

