
■ DiamondHelp is a generic collaborative task guid-
ance system motivated by the current usability crisis
in high-tech home products. It combines an applica-
tion-independent conversational interface (adapted
from online chat programs) with an application-spe-
cific direct-manipulation interface. DiamondHelp is
implemented in Java and uses Collagen for repre-
senting and using task models.

Our diagnosis of the current usability cri-
sis in high-tech home products (see
sidebar this page) identifies two funda-

mental underlying causes: the exhaustion of
conventional interaction paradigms and the
lack of consistency in user interface design.
This article addresses both of these causes by
introducing a new framework for building col-
laborative task guidance systems, called Dia-
mondHelp.

The dominant current paradigm for human-
computer interaction is direct manipulation
(Shneiderman and Plaisant 2005), which can
be applied with great effectiveness and ele-
gance to those aspects of an interface that
afford natural and intuitive analogies to phys-
ical actions, such as pointing, dragging, sliding,
and so on. In practice, however, most inter-
faces of any complexity also include an ad hoc
and bewildering collection of other mecha-
nisms, such as tool bars, pop-up windows,
menus, command lines, and so on.

To make matters worse, once one goes
beyond the most basic functions (such as open,
save, and so on), there is very little design con-
sistency between interfaces to different prod-
ucts, even from the same manufacturer. The
result is that it requires too large an investment

of the typical user’s time to learn all the intri-
cacies of each new product.

The DiamondHelp framework consists of
three components: (1) an interaction paradigm
based on task-oriented human collaboration,
(2) a graphical user interface (GUI) design that
combines conversational and direct-manipula-
tion interfaces, and (3) a software architecture
of reusable JavaBeans.

The first two of these components are ori-
ented towards the user; the third component
addresses the needs of the software developer.
Each of these components is described in detail
later on.

Figure 1 illustrates the DiamondHelp user
interface design. The top half of the screen is
the generic conversational interface, while the
bottom half is a direct-manipulation interface
for a combination washer-dryer. Although our
immediate motivation has been the usability
crisis in DVD recorders, programmable ther-
mostats, combination washer-dryers, refrigera-
tor-ovens, and so on, DiamondHelp is not lim-
ited to home appliances; it can be applied to
any software interface.

DiamondHelp grew out of a longstanding
research thread on human-computer collabo-
ration, organized around the Collagen system
(see the Collagen sidebar). Our work on Colla-
gen, however, has been primarily concerned
with the underlying semantic and pragmatic
structures for modeling collaboration, whereas
DiamondHelp is focused on the appearance
(the “look and feel”) that a collaborative sys-
tem presents to the user. Although Collagen
plays a key role in our implementations of Dia-
mondHelp applications (see the Software
Architecture Section), the DiamondHelp

Articles

SUMMER 2007 33Copyright © 2007, Association for the Advancement of Artificial Intelligence. All rights reserved. ISSN 0738-4602

DiamondHelp:
A Generic Collaborative
Task Guidance System

Charles Rich and Candace L. Sidner

AI Magazine Volume 28 Number 2 (2007) (© AAAI)

framework can also be used independently of
Collagen.

Finally, in relation to this special issue of AI
Magazine, we would say that mixed initiative is
at the heart of DiamondHelp since collabora-
tion and mixed initiative are virtually coexten-
sive concepts: all collaborative systems are
mixed initiative, and most interesting mixed-
initiative systems are collaborative (see further
discussion in the Mixed Initiative section).

Interaction Paradigm
Although an “interaction paradigm” is some-
what abstract and difficult to define formally, it
is crucial to the overall development of inter-
active systems. In particular, the consistent
expression and reinforcement of the interac-
tion paradigm in the user interface design
(what the user sees) leads to systems that are
easier to learn and use. The interaction para-
digm also provides organizing principles for

the underlying software architecture, which
makes such systems easier to build.

The collaborative paradigm for human-com-
puter interaction, illustrated in figure 2, mim-
ics the relationships that typically hold when
two humans collaborate on a task involving a
shared artifact, such as two mechanics working
on a car engine together or two computer users
working on a spreadsheet together. This para-
digm differs from the conventional view of
interfaces in two key respects.

First, notice that the diagram in figure 2 is
symmetric between the user and the system.
Collaboration in general involves both action
and communication by both participants, and
in the case of co-present collaboration (which
is the focus of DiamondHelp) the actions of
each participant are directly observed by the
other participant.

One consequence of this symmetry is that
the collaborative paradigm spans, in a princi-
pled fashion, a very broad range of interaction
modes, depending on the relative knowledge
and initiative of the system versus the user. For
example, “tutoring” (also known as intelligent
computer-aided instruction) is a kind of col-
laboration in which the system has most of the
knowledge and initiative. At the other end of
the range is “intelligent assistance,” wherein
the user has most of the knowledge and initia-
tive. Furthermore, a collaborative system can
easily and incrementally shift within this range
depending on the current task context.

Second, and at a deeper level, the primary
role of communication in collaboration is not
for the user to tell the system what to do (the
traditional “commands”), but rather to estab-
lish and negotiate about goals and how to
achieve them. J. C. R. Licklider observed this
fundamental distinction more than 40 years
ago in a classic article, which is well worth
revisiting (see the Licklider sidebar and Lesh et
al. 2004).

The problem with the command view of
user interfaces is that it demands too much
knowledge on the part of the user. Conven-
tional systems attempt to compensate for this
problem by adding various kinds of ad hoc
help facilities, tool tips, wizards, and so on,
which are typically not integrated into any
clear paradigm. (See Related Work for specific
discussion of the relation of DiamondHelp to
wizards and Microsoft’s Clippy.) In contrast,
collaboration encompasses all of these capabil-
ities within the paradigm.

Finally, notice that figure 2 does provide a
place to include direct manipulation as part of
the collaborative paradigm; that is, one can
choose to implement the application’s GUI

Articles

34 AI MAGAZINE

Figure 1. DiamondHelp for Combination Washer-Dryer.

The Usability Crisis in
High-Tech Home Products
... technology remains far too hard for most folks to use and most
people can only utilize a tiny fraction of the power at their dispos-
al. (Business Week, 2004)

Half of all “malfunctioning products” returned to stores by con-
sumers are in full working order, but customers can’t figure out
how to operate the device. (Reuters, 2006)

using direct manipulation. This is, in fact,
exactly what we have done in the user interface
design for DiamondHelp, described in the next
section.

User Interface Design
Our overarching goal for the DiamondHelp
user interface design was to signal, as strongly
as possible, a break from the conventional
interaction style to the new collaborative para-
digm. A second major challenge was to acco-
modate what is inescapably different about
each particular application of DiamondHelp
(the constructs needed to program a thermo-
stat are very different from those needed to
program a washing machine) while preserving
as much consistency as possible in the collabo-
rative aspects of the interaction. If someone
knows how to use one DiamondHelp applica-
tion, he or she should know how to use any
DiamondHelp application.

In order to address these concerns, we divid-
ed the screen into two areas, as shown in the
example DiamondHelp interfaces of figures 1,
3, and 4. The washer-dryer has been imple-

mented in Java; the other two appliances are
Flash simulations. The top half of each of these
screens is the same distinctive DiamondHelp
conversational interface. The bottom half of
each screen is an application-specific direct-
manipulation interface. Dividing the screen
into two areas is, of course, not new; our con-
tributions are the specific graphical interface
design and the reusable software architecture
described later.

Articles

SUMMER 2007 35

GOALS
(etc.)

SYSTEM
communication

observe observe

action action

USER

Application
GUI

Figure 2. The Collaborative Paradigm.

J. C. R. Licklider in 1960 on
Human-Computer Collaboration

[Compare] instructions ordinarily addressed to intelligent human
beings with instructions ordinarily used with computers. The lat-
ter specify precisely the individual steps to take and the sequence
in which to take them. The former present or imply something
about incentive or motivation, and they supply a criterion by
which the human executor of the instructions will know when he
has accomplished his task. In short: instructions directed to com-
puters specify courses; instructions directed to human beings spec-
ify goals. (Licklider 1960)

Conversational Interface
To express and reinforce the human-computer
collaboration paradigm, which is based on
human-human communication, we adopted
the scrolling speech bubble metaphor often
used in online chat programs, which support
human-human communication. The bubble
graphics nicely reflect the collaborative para-
digm’s symmetry between the system and the
user, discussed previously. This graphical
metaphor also naturally extends to the use of

speech synthesis and recognition technology
(see the conclusion).

The top half of every DiamondHelp interface
is thus a conversation (“chat”) between Dia-
mondHelp (the system), represented by the
Mitsubishi three-diamond logo on the left, and
the user, represented by the human profile on
the right. All communication between the user
and system takes place in these bubbles; there
are no extra toolbars, pop-up menus, and so
on.

The basic operation of the conversational
part of the DiamondHelp interface is as fol-
lows. Let’s start with the opening of the con-
versation, which is the same for all Diamond-
Help applications:

After the system says its welcome, a user
bubble appears with several options for the
user to choose from. We call this the user’s
“things-to-say” bubble. At the opening of the
conversation, there are only four choices:
“What next?,” “oops,” “done,” and “help.”
Notice that the last three of these options are
specially laid out with icons to the right of the
vertical line; this is because these three options
are always present (see Predefined Things to
Say).

At this point, the user is free either to reply
to the system’s utterance by selecting one of
the four things to say or to interact with the
direct manipulation part of the interface.
Unlike the case with traditional “dialog boxes,”
the application GUI is never locked. This flexi-
bility is a key aspect of how we have combined
conversational and direct-manipulation inter-
faces in DiamondHelp.

In this scenario, the user decides to request
task guidance from the system by selecting
“What next?” in the things-to-say bubble. As
we have argued elsewhere (see Rich, Sidner,
and Lesh [2001]), every interactive system
should be able to answer a “What (can I do)
next?” question.

As part of the interface animation, whenev-
er the user makes a things-to-say selection (by
clicking or touching the desired word or
phrase), the not-selected items are erased and
the enclosing bubble is shrunk to fit only the
selected word or phrase. Furthermore, in prepa-

Articles

36 AI MAGAZINE

Figure 3. DiamondHelp for DVD Recorder.

Figure 4. DiamondHelp for Programmable Thermostat.

ration for the next step of the conversation, the
completed system and user bubbles are “grayed
out” and scrolled upward (if necessary) to make
room for the system reply bubble and the user’s
next things-to-say bubble:

DiamondHelp applications always reply to
“What next?” by a “You can...” utterance with
the actual options for the possible next task
goals or actions presented inside the user’s
things-to-say bubble:

In this scenario, from DiamondHelp for a
programmable thermostat (see figure 4), the
direct-manipulation interface shows the fami-
ly’s schedule for the week. The entries in this
schedule determine the thermostat’s tempera-
ture settings throughout the day. The user
chooses the goal of removing a schedule entry:

The system replies by asking the user to indi-
cate, by selection in the direct-manipulation
interface, which schedule entry is to be
removed. Notice that the user’s things-to-say
bubble includes only three choices. “What
next?” is not included because the system has
just told the user what to do next:

Although the system is expecting the user
next to click (or touch) in the direct-manipula-
tion interface (see figure 5), the user is still free
to use the conversational interface, such as to
ask for help.

Scrolling History
As in chat windows, a DiamondHelp user can
at any time scroll back to view parts of the con-
versation that have moved off the screen. This
is particularly useful for viewing explanatory
text, which can be quite long (for example,
suppose the system utterance in figure 3 was
several lines longer).

The oval beads on each side of the upper half

of the screen in figures 1, 3, and 4 are standard
scroll bar sliders. We also support scrolling by
simply dragging anywhere on the lined back-
ground of the upper window.

An interesting DiamondHelp extension to
explore is allowing the user to “restart” the
conversation at an earlier point in the history
and move forward again with different choices.
This could be a good way to support the back-
tracking paradigm for problem solving and is
also closely related to our earlier work on his-
tory-based transformations in Collagen; see
Rich and Sidner (1998).

Things to Say
The user’s things-to-say bubble is partly an
engineering compromise to compensate for
the lack of natural language understanding (see
the conclusion). It also, however, partly serves
the function of suggesting to the user what she
can do at the current point.

In the underlying software architecture, each
choice in the things-to-say bubble is associated
with the semantic representation of an utter-
ance. When the user selects the desired word or
phrase, the architecture treats the choice as if
the missing natural language-understanding
system produced the associated semantics.

From a design perspective, this means that
the wording of the text displayed for each
things-to-say choice should read naturally as
an utterance by the user in the context of the

Articles

SUMMER 2007 37

Figure 5. Selection in the Direct-Manipulation Area.

(See the small triangular cursor in the first column of the schedule.)

ongoing conversation. For example, in figure 1,
in reply to the system’s question “How can I
help you?,” one of the things-to-say choices is
“Explain wash agitation,” not “wash agita-
tion.”

At a deeper level, to be true to the spirit of
the collaborative paradigm, the content of the
conversations in DiamondHelp, that is, both
the system and user utterances, should concern
not only primitive actions (“Remove a sched-
ule entry”) but also higher-level goals (“Sched-
ule a vacation”) and motivation (“Why?”).

When Collagen is used in the implementa-
tion of a DiamondHelp application, all system
utterances and the user’s things-to-say choices
are automatically generated from the task mod-
el given for the application (see the Collagen
Collaboration Plug-in section). Without Colla-
gen, the appropriate collaborative content is
provided by the application developer, guided
by the principles elucidated here.

An obvious limitation of the things-to-say
approach is that there is only room for a rela-
tively small number of choices inside the user
bubble—six or eight without some kind of
nested scrolling, which we would like to avoid.
Furthermore, since we would also like to avoid
the visual clutter of drop-down choices within
a single user utterance, each thing-to-say is a
fixed phrase without variables or parameters.

Given these limitations, our design strategy
is to use the direct-manipulation interface to
enter variable data. For example, in Diamond-
Help for a washer-dryer, instead of the system
asking “How long is the dry cycle?” and gener-
ating a things-to-say bubble containing “The
dry cycle is 10 minutes,” “... 15 minutes,” and
so on, the system says “Please set the dry cycle
time,” points to the appropriate area of the
direct-manipulation interface, and expects the
user to enter the time through the appropriate
graphical widget. Figure 5 is a similar example
of using the direct-manipulation interface to
provide variable data, in this case to select the
thermostat schedule entry to be removed.

Use of a textual things-to-say list together
with Collagen and speech recognition has been
studied by Sidner and Forlines (2002) for a per-
sonal video recorder interface and by DeKoven
(2004) for a programmable thermostat.

Predefined Things to Say
Most of the things to say are specific to an
application. However, a key part of the generic
DiamondHelp design is the following set of
user utterances, which should have the same
meaning in all applications: “What next?,”
“Never mind,” “Oops,” “Done,” and “Help.” In
addition, to save space and enhance appear-

ance, we have adopted a special layout for the
last three of these utterances, which are always
present.

“What next?” has been discussed previously.
“Never mind” is a way to end a question with-
out answering it (see figure 1). “Oops,” “Done,”
and “Help” each initiate a subdialogue in
which the system tries to determine, respec-
tively, how to recover from a mistake, what lev-
el of task goal has been completed, or what
form of help the user desires.

When Collagen is used in the implementa-
tion of DiamondHelp, the semantics of the pre-
defined things to say are automatically imple-
mented correctly; otherwise this is the
responsibility of the collaboration plug-in
implementor (see the Software Architecture
section).

Task Bar
An additional component of the DiamondHelp
conversational interface is the task bar, which
is the single line located immediately above the
scrollable history and below the DiamondHelp
logo in figures 1 and 3 (the task bar in figure 4
happens to be blank at the moment of the
screen shot). For example, in figure 1, the con-
tents of the task bar reads:

Make a new cycle > Adjust wash agitation
> Help

The task bar, like the scrollable history and the
predefined “What next?” utterance, is a mech-
anism aimed towards helping users when they
lose track of their context, which is a common
problem in complex applications. When Colla-
gen is used in the implementation of Dia-
mondHelp, the task bar is automatically updat-
ed with the path to the currently active node in
the task model tree (see figure 8 and the Colla-
gen sidebar). Otherwise, it is the responsibility
of the collaboration plug-in implementor to
update the task bar with appropriate task con-
text information.

Currently, the task bar is for display only.
However, we have considered extending the
design to allow users to click (touch) elements
of the displayed path and thereby cause the
task focus to move. This possible extension is
closely related to the scrollable history restart
extension discussed previously.

Application GUI
The bottom half of each screen in figures 1, 3,
and 4 is an application-specific direct-manipu-
lation interface. The details of these GUIs are
not important to the main point of this article.
If fact, there is nothing in the DiamondHelp
framework that guarantees or relies upon the
application GUI being well designed or even

Articles

38 AI MAGAZINE

that it follow the direct-manipulation para-
digm, though this is recommended. (The only
way to guarantee this would be for Diamond-
Help to automatically generate the application
GUI from a task model. We have done some
research on this approach [Eisenstein and Rich
2002], but it is still far from practical.)

Furthermore, to achieve our overall goal of
consistency across applications, an industrial-
grade DiamondHelp would, like conventional
UI toolkits, provide standard color palettes,
widgets, skins, and so on. However, this is
beyond the scope of a research prototype.

Two design constraints that are relied upon
by the DiamondHelp framework are (1) the
user should be able to use the application GUI
at any time, and (2) every user action on the
application GUI is reported to the system (see
the Manipulation Plug-in section).

Finally, it is worth noting that, for the three
applications presented here, it is possible to
perform every function the application sup-
ports entirely using the direct-manipulation
interface, that is, totally ignoring the conversa-
tional window. While this is a pleasant fact, we
also believe that in more complex applications,
there may be some overall advantage in relax-
ing this constraint. This is a design issue we are
still exploring.

Software Architecture
In contrast to most of the previous discussion,
which focuses on the the user’s view of Dia-
mondHelp, this section addresses the needs of
the software developer. The overarching issue
in DiamondHelp’s software architecture is
reuse, that is, factoring the code so that the
developer of a new DiamondHelp application
has to write only what is idiosyncratic to that
application while reusing as much generic Dia-
mondHelp framework code as possible.

Figure 6 shows our solution to this chal-
lenge, which we have implemented in Jav-
aBeans and Swing. (Dotted lines indicate
optional, but recommended, components.) All
the application-specific code is contained in
two “plug-ins,” which are closely related to the
two halves of the user interface. The rest of the
code (shaded region) is generic DiamondHelp
framework code.

In addition to the issues discussed in this sec-
tion, there are a number of other standard
functions of plug-and-play architectures (of
which DiamondHelp is an instance), such as
discovering new devices connected to a net-
work, loading the appropriate plug-ins, and so
on, which are beyond the scope of this article.

Manipulation Plug-in
Notice that the manipulation plug-in “sticks
out” of the DiamondHelp framework box in
figure 6. This is because it is directly responsi-
ble for managing the application-specific por-
tion of the DiamondHelp interface. Diamond-
Help simply gives this plug-in a Swing
container object corresponding to the bottom
half of the screen.

We recommend that the manipulation plug-
in provide a direct-manipulation style of inter-
face implemented using the model-view archi-
tecture, as shown by the dotted lines in figure
6. In this architecture, all of the “semantic”
state of the interface is stored in the model sub-
component; the view subcomponent handles
the application GUI.

Regardless of how the manipulation plug-in
is implemented internally, it must provide an
application programming interface (API) with
the DiamondHelp framework that includes
two event types: outgoing events (user action
observation), which report state changes result-
ing from user GUI actions, and incoming
events (system action), which specify desired
state changes. Furthermore, in order to pre-
serve the symmetry of the collaborative para-
digm (see figure 2), it is the responsibility of the
plug-in to update the GUI in response to
incoming events so that the user may observe
system actions. As an optional but recom-
mended feature, the manipulation plug-in may
also provide the DiamondHelp framework with
the graphical location of each incoming state
change event, so that DiamondHelp can move
a cursor or pointer to that location to help the
user observe system actions.

Note that the content of both incoming and
outgoing state change events is specified in
semantic terms, for example, “change dry cycle
time to 20 min,” not “button click at pixel
100,200.” Lieberman (1998) further discusses
this and other issues related to interfacing
between application GUIs and intelligent sys-
tems.

Collaboration Plug-in
Basically, the responsibility of the collabora-
tion plug-in is to generate the system’s respons-
es (actions and utterances) to the user’s actions
and utterances. Among other things, this plug-
in is therefore responsible for implementing
the semantics of the predefined utterances (see
next section).

The collaboration plug-in has two inputs:
observations of user actions (received from the
manipulation plug-in), and user utterances
(resulting from user choices in the things-to-
say bubble). It also has four outputs: system

Articles

SUMMER 2007 39

actions (sent to the manipulation plug-in), sys-
tem utterances (which go into system bubbles),
things to say (which go into user bubbles), and
the task bar contents.

Notice that the collaboration plug-in is
responsible for providing only the content of
the system and user bubbles and the task bar.
All of the graphical aspects of the conversa-
tional window are managed by DiamondHelp
framework code. It is also an important feature
of the DiamondHelp architecture that the col-
laboration plug-in developer does not need to
be concerned with the graphical details of the
application interface. The collaboration plug-
in developer and the manipulation plug-in
developer need only to agree on a semantic
model of the application state.

For a very simple application, the collabora-
tion plug-in may be implemented by a state
machine or other ad hoc mechanisms. Howev-
er, in general, we expect to use the Collagen
version described in the next section.

Collagen Collaboration Plug-in
The Collagen version of the collaboration plug-
in includes an instance of Collagen, with a lit-
tle bit of wrapping code to match the collabo-
ration plug-in API. Collagen has already been
described in an earlier article (see Collagen
sidebar). We will only highlight certain aspects
here which relate to DiamondHelp.

The most important reason to use the Colla-

gen collaboration plug-in is that the applica-
tion developer needs to provide only one
thing: a task model. All four outputs of the col-
laboration plug-in described previously are
then automatically generated by Collagen as
shown in figure 7.

System utterances and actions are produced
by Collagen’s usual response generation mech-
anisms (Rich et al. 2002). The semantics of
some of the predefined DiamondHelp user
utterances, such as “Oops,” “Done,” and
“Help,” are captured in a generic task model,
which is used by Collagen in addition to the
application-specific task model provided. Each
of these predefined utterances introduces a
generic subgoal with an associated subdialogue
(using Collagen’s discourse stack). Other pre-
defined utterances, such as “What next?” and
“Never mind,” are built into Collagen.

The third collaborative plug-in output pro-
duced by Collagen is the user’s things to say.
Basically, the things to say are the result of fil-
tering the output of Collagen’s existing dis-
course (agenda) generation algorithm. The first
step of filtering is remove everything except
expected user utterances. Then, if there are still
too many choices, a set of application-indepen-
dent heuristics are applied based on the type of
communicative act (proposal, question, and so
on). Lastly, predefined utterances are added as
appropriate. The further details of this algo-
rithm need to be the topic of a separate article.

Articles

40 AI MAGAZINE

Model

View

Manipulation
Plug-in

user action

user
utterance

observation

Collagen

Task Model

utterance
system

application GUI update

user bubble

system bubble

things
to say

task bar

user manipulation

system action

user
choice

Collaboration
Plug-in

DiamondHelp

Figure 6. DiamondHelp Software Architecture.

Mixed Initiative
In this section, we review DiamondHelp with
respect to the shared themes of this special
issue of AI Magazine on mixed-initiative assis-
tants.

To begin, let us follow up on our earlier com-
ment that mixed initiative and collaboration
are virtually coextensive concepts. Horvitz pro-
vides as good a definition as any of mixed ini-
tiative:

... an efficient, natural interleaving of contribu-
tions by users and automated services aimed at
converging on solutions to problems. (Horvitz
1999)

Compare this with the definition of collabo-

ration upon which Collagen (and therefore
DiamondHelp) is based:

... a process in which two or more participants
coordinate their actions toward achieving
shared goals. (Rich, Sidner, and Lesh 2001)

If the two participants in a collaboration are
the user and an automated system, then such a
collaboration is generally mixed initiative;
only in those rare or simple circumstances
where one participant provides no contribu-
tion to any goal (including clarification, suc-
cess/failure report, and so on) is mixed initative
lacking. Conversely, the only part of the defi-
nition of collaboration that is missing from the
definition of mixed initiative is the explicit
mention of “shared goals” (and it is perhaps

Articles

SUMMER 2007 41

Collagen (for collaborative agent) is Java middleware for
building collaborative interface agents based on Grosz
and Sidner’s SharedPlan theory of collaborative discourse
(Grosz and Sidner 1986, 1990; Grosz and Kraus 1996;
Lochbaum 1998). Collagen has been used to build more
than a dozen prototypes, including an air travel planning
assistant (Rich and Sidner 1998); e-mail assistant (Gruen
et al 1999); VCR programming assistant (Sidner and For-
lines 2002); power system operation assistant (Rickel et
al. 2001); gas turbine engine operation tutor (Davies et al.
2001); flight path planning assistant (Cheikes and Gert-
ner 2001); recycling resource allocation assistant; soft-
ware design tool assistant; programmable thermostat
helper (DeKoven, Keyson, and Freudenthal 2001);
mixed-initiative multimodal form filling, and robot host-
ing system (Sidner et al. 2005).

The two key data structures in Collagen’s architecture
(see figure 7) are the task model and the discourse state.
The two key algorithms are discourse interpretation and
generation.

Task Model
A task model is an abstract, hierarchical, partially ordered
representation of the actions typically performed to
achieve goals in the application domain. Figure 8 shows
a fragment of the task model for the programmable ther-
mostat application in figure 4. Although this example
does not, task models in general also contain alternative
decomposition choices. Collagen currently provides a
Java extension language for defining task models, but we
will adopt the new CEA standard (see the conclusion) as
soon as it is completed.

Discourse State
The discourse state tracks the beliefs and intentions of
the participants in the current collaboration and pro-
vides a focus of attention mechanism for tracking shifts
in the task and conversational context. Collagen’s dis-

course state is implemented as a goal decomposition
(plan) tree plus a stack of focus spaces (each of which
includes a focus goal). The top goal on the focus stack is
the “current purpose” of the discourse.

Discourse Interpretation
The basic job of discourse interpretation is to update the
discourse state incrementally by explaining how each
occurring event (action or utterance by the user or the
system) contributes to the current purpose. An event
contributes to a purpose if it either (1) directly achieves
the purpose, or (2) is a step in the task model for achiev-
ing the purpose, or (3) selects one of alternative decom-
position choices for achieving the purpose, or (4) identi-
fies which participant should achieve the purpose, or (5)
identifies a parameter of the purpose.

If the current event contributes, either directly or indi-
rectly, to the current purpose, then the plan tree is appro-
priately extended to include the event; the focus stack
may also be pushed or popped. Our discourse-interpreta-
tion algorithm extends Lochbaum’s (1998) original for-
mulation by incorporating plan recognition (Lesh, Rich,
and Sidner 1999, 2001) and handling interruptions.

Discourse Generation.
The discourse-generation algorithm in Collagen is essen-
tially the inverse of discourse interpretation. Based on
the current discourse state, it produces a prioritized list,
called the agenda (see figure 7), of partially or totally
specified utterances and actions that would contribute to
the current discourse purpose according to the five cases
itemized previously.

In general, an agent may use any application-specific
logic it wants to decide on its next action or utterance. In
most cases, however, an agent can simply choose the first
item on the agenda generated by Collagen.

*This sidebar is a summary of Rich, Sidner, and Lesh (2001).

Collagen: Applying Collaborative Discourse Theory to Human-Computer Interaction

implicit in “converging on solutions”). One
could imagine some sort of interaction with
interleaved contributions without shared
goals, but it is hard to believe it would be very
efficient or natural.

Division of Labor and Control
In general in a collaboration, decisions about
who does what and when are matters for nego-
tiation between the participants. In many con-
crete settings, however, many of these deci-
sions are conventionalized by the context.
Consider, for example, the collaboration
between the customer and clerk at a retail
counter. Similarly, DiamondHelp has been
designed with a certain expected, though
adjustable (see the Personalization subsection
that follows), division of labor and control.

Basically, DiamondHelp assumes that the

user knows what she wants to do at a high lev-
el but needs help carrying out the necessary
details. Furthermore, DiamondHelp normally
returns control to the user as quickly as possible
(by putting “What next?” in the user bubble).

Architecture
The key to DiamondHelp’s power and flexibil-
ity as a mixed-initiative system is the high
degree of symmetry between the user and the
system in all aspects of the architecture, from
the user interface, to discourse interpretation,
to the task model. Many interactive systems,
even mixed-initiative ones, have built-in asym-
metries that limit their flexibility.

The symmetry of the chat-based user inter-
face has already been discussed previously. In
figure 7, notice that the discourse-interpreta-
tion process is applied to both user and system

Articles

42 AI MAGAZINE

Choose
Discourse State

Discourse
Generation

Interpretation

user utterance

user action

system action

system utterance

observation

Task Model

Discourse

things to say

task bar

Agenda

Figure 7. Collagen Architecture.

(Arrows on the left of this figure correspond to arrows with the same labels in figure 6).

utterances and actions. This is a reflection of
the fact that the collaborative discourse state
represents the mutual beliefs of the partici-
pants (see Sidner [1994] for more details).

Finally, and most fundamentally, the task
model that drives a DiamondHelp interaction
generally specifies only what needs to be done,
not who should do it. (The only exception is
when one participant is fundamentally inca-
pable of performing some action.) For example,
consider the two steps to achieve the schedule
vacation goal in figure 8. This task model
accounts for an interaction in which the user
selects both the first day and the last day
through the direct-manipulation area, and also
an interaction in which the system selects both
days (perhaps based on other knowledge), or
interactions in which one day is selected by the
user and one by the system. Which interaction
actually occurs depends on the actions and
knowledge of the user and the system in the
particular situation.

Communication and
Shared Awareness
As discussed earlier, DiamondHelp is based on
a model of co-present collaboration involving
a shared artifact/application (see figure 2). Our
user interface design attempts to give the feel-
ing of natural communication without actual-
ly requiring natural language or speech pro-
cessing. For shared awareness of the
application state, DiamondHelp relies totally
on the graphical user interface provided
through the manipulation plug-in. Diamond-
Help itself provides two mechanisms to sup-
port shared awareness of the task/conversation
state: the task bar and the scrollable chat win-
dow. Collagen also provides a much more com-

plete representation of task/conversation state,
called the segmented interaction history (see
Rich, Sidner, and Lesh [2001]), which is not
currently incorporated into the design of Dia-
mondHelp.

Personalization
In addition to the significant personalization
and adaptation inherent in all collaborative
interactions, there are at least two specific per-
sonalization mechanisms in DiamondHelp
worth mentioning here. Both of these mecha-
nisms take advantage of facilities in Collagen,
such as the student model, developed for intel-
ligent tutoring (Rickel et al. 2002), which is not
surprising, since personalization is a key aspect
of intelligent tutoring.

First, as discussed previously, DiamondHelp
normally returns control to the user as quickly
as possible. However, based on simple observa-
tions of the user’s behavior, such as timing and
errors, DiamondHelp can switch into a mode
where it takes control and guides the user
through an entire task or subtask, without the
user having to ask “What next?” at each step.

A second personalization has to do with
whether the system asks the user to perform
certain manipulations on the application GUI
or simply performs them itself. For example, in
the washer-dryer application, the system can
either say “Please click here to pop up the tem-
perature dial” or simply pop up the tempera-
ture dial window at the appropriate time itself.
The former case has the benefit that the user
learns where to click in the future; the latter
case has the benefit of being faster. Diamond-
Help can switch between these modes on a per
action basis, depending on whether the user
has already performed the action once or twice
herself.

Articles

SUMMER 2007 43

select last day

add entry remove entry modify entry schedule vacation

program thermostat

select first day

Figure 8. Task Model for Programmable Thermostat.

Evaluation
Figure 9 shows the three conditions in a user
study we are currently planning to evaluate
DiamondHelp using the washer-dryer exam-
ple. The printed manual in condition B will
contain the same information (literally the
same text) that is communicated dynamically
by DiamondHelp in condition C. Users in each
condition will be assigned a set of tasks that
will require them to use the advanced pro-
grammability features of the washer-dryer. We
plan to obtain both objective measures, such as
time and quality of task completion, and sub-
jective evaluations of experience.

Related Work
The most closely related work to Diamond-
Help, in terms of both application and
approach, is the Roadie system (Lieberman and
Espinosa 2006), which is also directed towards
consumer electronics and shares the task-mod-
el approach. Roadie differs from DiamondHelp
primarily in not using a conversational or col-
laborative model for its interface. Roadie also
incorporates natural language understanding
and commensense knowledge components for
guessing the user’s desires,

Also closely related is the Writer’s Aid system
(Babaian, Grosz, and Shieber 2002), which
applies the same collaborative theory upon
which DiamondHelp is based to a single specif-
ic task, rather than developing a general tool.

Of the articles in this special issue of AI Mag-
azine, the most closely related is Ferguson and
Allen (2007). The collaborative model and
implementation architecture used in that work
are very similar to those described here. The

scope of their work, however, is broader than
ours, since they also build natural language-
understanding components. Furthermore,
their architecture includes a beliefs, desires,
and intentions (BDI) component that is pres-
ent only in vestigial form in DiamondHelp/
Collagen.

BDI architecture is at the heart of the mixed-
initiative personal assistant of Myers et al.
(2007). They describe the interaction paradigm
used in their work as “delegative,” and contrast
it with the collaborative paradigm. We would
view delegation as being included within the
range of collaboration; see Grosz and Kraus
(1996).

Another category of related work is generic
software architectures for connecting arbitrary
applications with help facilities. The best-
known example of this category is Microsoft’s
Clippy. Clippy’s interaction paradigm might be
described as “watching over the user’s shoulder
and jumping in when you have some advice”
and is, in our opinion, the main reason for
Clippy’s well-known unpopularity among
users. In contrast, the collaborative paradigm
underlying DiamondHelp emphasizes ongoing
communication between the system and user
to maintain shared context.

Also in this category are so-called wizards,
such as software installation wizards, and so
on, which come in many different forms from
many different manufacturers. Our feeling
about wizards is that wizards embody the right
paradigm, that is, interactively guiding the
user, but in too rigid a form. DiamondHelp
subsumes the capabilities of wizards, but also
allows users to take more initiative when they
want to.

Articles

44 AI MAGAZINE

(C) DiamondHelp(A) No Guidance (B) Printed Manual

Figure 9. Three Conditions in Planned User Study.

Conclusion
The contributions of this work are twofold.
First, we have explicated a novel user interface
design that expresses and reinforces the
human-computer collaboration paradigm by
combining conversational and direct-manipu-
lation interfaces. Second, and more concretely,
we have produced the DiamondHelp software,
which can be used by others to easily construct
such interfaces for new applications.

A number of small extensions to Diamond-
Help have already been discussed in the body
of this article. Another general set of exten-
sions have to do with adding speech and natu-
ral language-understanding technology.

Adding text-to-speech generation to the sys-
tem bubble is a very easy extension, which we
have already done (it’s an optional feature of
the software). Furthermore, we have found that
using a system with synthesized speech is sur-
prisingly more pleasant than without, even
when user input is still by touch or click.

Adding speech recognition can be done in
two ways. The first, more limited way, is to use
speech recognition to choose one of the dis-
played things to say. We have already done this
(another optional feature) and have found that
the speech recognition is in general quite reli-
able, because of the small number of very dif-
ferent utterances being recognized. Further-
more, because of the way that the things-to-say
mechanism is implemented, this extension
requires no changes in the collaboration or
manipulation plug-ins for an application.

A second, and much more ambitious
approach, is to dispense with the things-to-say
bubble and try to recognize anything the user
says, which, of course, requires broad underly-
ing speech and natural language-understand-
ing capabilities. If one has broad natural lan-
guage understanding, another variation is to
support unrestricted typed input from the user
instead of speech.

Alternatively, it would be trivial (at least
from the user interface point of view) to revert
the conversational interface to its original
function as a chat between two humans, the
user and a remote person. This could be useful,
for example, for remote instruction or trou-
bleshooting. The system could even automati-
cally shift between normal and “live chat”
mode.

Finally, returning to the original motivation
of this work, namely the usability crisis in
high-tech home products, the Consumer Elec-
tronics Association (www.ce.org) has recently
created a new Task-Based User Interface work-
ing group, which will develop a standard (CEA-
2018) for representing task models. This stan-

dard has the potential of helping systems like
DiamondHelp to have a significant impact on
the usability problem.

Acknowledgements
The work described here took place at Mit-
subishi Electric Research Laboratories between
approximately January 2004 and June 2006.
The basic DiamondHelp concept was devel-
oped in collaboration with Neal Lesh and
Andrew Garland. Shane Booth provided graph-
ic design input. Markus Chimani implemented
key parts of the graphical interface in Java.

References
Babaian, T.; Grosz, B.; and Shieber, M. 2002. A
Writer’s Collaborative Aid. In Proceedings of the Inter-
national Conference on Intelligent User Interfaces, 7–14.
New York: Association for Computing Machinery.

Cheikes, B., and Gertner, A. 2001. Teaching to Plan
and Planning to Teach in an Embedded Training Sys-
tem. Paper presented at the Tenth International Con-
ference on Artificial Intelligence in Education, 19–23
May, San Antonio, Texas.

Davies, J.; Lesh, N.; Rich, C.; Sidner, C.; Gertner, A.;
and Rickel, J. 2001. Incorporating Tutorial Strategies
into an Intelligent Assistant. In Proceedings of the
International Conference on Intelligent User Interfaces,
53–56. New York: Association for Computing
Machinery.

DeKoven, E. 2004. Help Me Help You: Designing Sup-
port for Person-Product Collaboration. Ph.D. Disser-
tation, Delft Institute of Technology, Delft, the
Netherlands.

DeKoven, E.; Keyson, D.; and Freudenthal, A. 2001.
Designing Collaboration in Consumer Products. In
Proceedings of the ACM Conference on Computer Human
Interaction, Extended Abstracts, 195–196. New York:
Association for Computing Machinery.

Eisenstein, J., and Rich, C. 2002. Agents and GUI’s
from Task Models. In Proceedings of the International
Conference on Intelligent User Interfaces, 47–54. New
York: Association for Computing Machinery.

Ferguson, G., and Allen, J. 2007. Mixed-Initiative Sys-
tems for Collaborative Problem Solving. AI Magazine
28(2).

Grosz, B. J., and Kraus, S. 1996. Collaborative Plans
for Complex Group Action. Artificial Intelligence
86(2): 269–357.

Grosz, B. J., and Sidner, C. L. 1986. Attention, Inten-
tions, and the Structure of Discourse. Computational
Linguistics 12(3): 175–204.

Grosz, B. J., and Sidner, C. L. 1990. Plans for Dis-
course. In Intentions and Communication, ed. P.
Cohen, J. Morgan, and M. Pollack, 417–444. Cam-
bridge, MA: MIT Press.

Gruen, D.; Sidner, C.; Boettner, C.; and Rich, C. 1999.
A Collaborative Assistant for E-Mail. In Proceedings of
the ACM SIGCHI Conference on Human Factors in Com-
puting Systems, Extended Abstracts, 196–197. New
York: Association of Computing Machinery.

Horvitz, E. 1999. Uncertainty, Action and Interac-

Articles

SUMMER 2007 45

tion: In Pursuit of Mixed-Initiative Computing. IEEE
Inteligent Systems 14(5): 17–20.

Lesh, N.; Marks, J.; Rich, C.; and Sidner, C. 2004.
“Man-Computer Symbiosis” Revisited: Achieving
Natural Communication and Collaboration with
Computers. IEICE Transactions Information and Sys-
tems E87–D(6): 1290–1298.

Lesh, N.; Rich, C.; and Sidner, C. 1999. Using Plan
Recognition in Human-Computer Collaboration. In
Proceedings of the Seventh International Conference on
User Modeling, 23–32. New York: Springer-Verlag.

Lesh, N.; Rich, C.; and Sidner, C. 2001. Collaborating
with Focused and Unfocused Users under Imperfect
Communication. In Proceedings of the Ninth Interna-
tional Conference on User Modeling, 64–73. New York:
Springer-Verlag.

Licklider, J. C. R. 1960. Man-Computer Symbiosis.
IRE Transactions on Human Factors in Electronics HFE-
1: 4–11.

Lieberman, H. 1998. Integrating User Interface
Agents with Conventional Applications. In Proceed-
ings of the International Conference on Intelligent User
Interfaces, 39–46. New York: Association for Comput-
ing Machinery.

Lieberman, H., and Espinosa, J. 2006. A Goal-Orient-
ed Interface to Consumer Electronics using Planning
and Commonsense Reasoning. In Proceedings of the
International Conference on Intelligent User Interfaces,
226–233. New York: Association for Computing
Machinery.

Lochbaum, K. E. 1998. A Collaborative Planning
Model of Intentional Structure. Computational Lin-
guistics 24(4): 525–572.

Myers, K.; Berry, P.; Blyth, J.; Conley, K.; Gervasio, M.;
McGuinness, D.; Morley, D.; Pfeffer, A.; Pollack, M.;
and Tambe, M. 2007. An Intelligent Personal Assis-
tant for Task and Time Management. AI Magazine
28(2).

Rich, C., and Sidner, C. 1998. COLLAGEN: A Collab-
oration Manager for Software Interface Agents. User
Modeling and User-Adapted Interaction 8(3–4): 315–
350.

Rich, C.; Lesh, N.; Rickel, J.; and Garland, A. 2002. A
Plug-In Architecture for Generating Collaborative
Agent Responses. In Proceedings of the First Interna-
tional Joint Conference on Autonomous Agents and Mul-
tiagent Systems. New York: Association for Comput-
ing Machinery.

Rich, C.; Sidner, C.; and Lesh, N. 2001. Collagen:
Applying Collaborative Discourse Theory to Human-
Computer Interaction. AI Magazine 22(4): 15–25.

Rickel, J.; Lesh, N.; Rich, C.; Sidner, C.; and Gertner,
A. 2001. Using a Model of Collaborative Dialogue to
Teach Procedural Tasks. Paper presented at the Work-
shop on Tutorial Dialogue Systems, Tenth Interna-
tional Conference on Artificial Intelligence in Educa-
tion, 19–23 May, San Antonio, Texas.

Rickel, J.; Lesh, N.; Rich, C.; Sidner, C.; and Gertner,
A. 2002. Collaborative Discourse Theory as a Foun-
dation for Tutorial Dialogue. In Proceedings of the 6th
International Conference on Intelligent Tutoring Systems,
542–551. Berlin: Springer.

Shneiderman, B., and Plaisant, C. 2005. Designing the

User Interface: Strategies for Effective Human-Computer
Interaction. Reading, MA: Addison-Wesley.

Sidner, C. L. 1994. An Artificial Discourse Language
for Collaborative Negotiation. In Proceedings of the
Twelfth National Conference on Artificial Intelligence,
814–819. Menlo Park, CA: AAAI Press.

Sidner, C. L.; Lee, C.; Kidd, C.; Lesh, N.; and Rich, C.
2005. Explorations in Engagement for Humans and
Robots. Artificial Intelligence 166 (1–2): 104–164.

Sidner, C. L., and Forlines, C. 2002. Subset Languages
for Conversing with Collaborative Interface Agents.
Paper presented at the International Conference on
Spoken Language Processing, Denver, CO., 16–20
September.

Charles Rich is a professor of
computer science at Worcester
Polytechnic Institute. He was pre-
viously a distinguished research
scientist at Mitsubishi Electric
Research Laboratories. He earned
his Ph.D. at the MIT Artificial
Intelligence Laboratory, where he
was a founder and director of the

Programmer’s Apprentice project. Rich is a fellow and
past councilor of AAAI, as well as having served as
chair of the 1992 International Conference on Prin-
ciples of Knowledge Representation and Reasoning,
cochair of the 1998 National Conference on Artificial
Intelligence, and program cochair of the 2004 Inter-
national Conference on Intelligent User Interfaces.
His e-mail address is rich@cs.wpi.edu.

Candace L. Sidner is a division
scientist at BAE Systems Advanced
Information Technologies. She
was previously a senior research
scientist at Mitsubishi Electric
Research Laboratories. She earned
her Ph.D. at the MIT Artificial
Intelligence Laboratory. Sidner is a
fellow and past councilor of AAAI,

as well as having served as president of the Associa-
tion for Computational Linguistics, chair of the 2001
and program cochair of the 2006 International Con-
ference on Intelligent User Interfaces, and cochair of
the 2004 SIGdial Workshop on Discourse and Dia-
logue, and general chair of the 2007 NAACL Human
Language Technology conference. Her e-mail address
is candy.sidner@baesystems.com.

Articles

46 AI MAGAZINE

